Этот сайт использует файлы cookies. Продолжая просмотр страниц сайта, вы соглашаетесь с использованием файлов cookies. Если вам нужна дополнительная информация, пожалуйста, посетите страницу Политика файлов Cookie
Subscribe
Прямой эфир
Cryptocurrencies: 9380 / Markets: 114950
Market Cap: $ 3 644 332 247 038 / 24h Vol: $ 186 288 672 461 / BTC Dominance: 59.263178941211%

Н Новости

«Скайнет» наоборот: как вырастить и обучить ИИ с помощью Дарвин-Гёдель машины для улучшения человеческой демографии

Разрабатываем и растим «цифрового губера» - консультанта по вопросам государственного политического управления, демографии и миграции. Решаем задачу оптимизации экономики и миграционной политики для устойчивого демографического роста в 89 регионах с помощью взаимодействующих друг с другом и обменивающихся опытом ИИ-агентов. Мультиагентное обучение на основе мутаций, скрещивания и эволюции, Multi-Agent Deep Deterministic Policy Gradient и Darwin Gödel Machine. Ахтунг, дальше - слишком многабукв и кода!

Пока ИИ у нас на четырех колесах и в коляске
Пока ИИ у нас на четырех колесах и в коляске

Постановка проблемы

Еще Ибн Халдун, а вслед за ним В. Парето, Г.Моска и прочие специалисты по теории элит говорили, что «кожаные мешки» принимают далеко не лучшие решения в управлении. Можно обратить внимание на то, что в современных изысканиях по структурно-демографической теории, а также вопросах кризисов, катастроф и революций Джека Голдстоуна и Питера Турчина «элитные кожаные мешки», склонны к перепроизводству, а значит, к избыточной конкуренции друг с другом, повышенной агрессии, престижному потреблению ресурсов и «отрицательному кадровому отбору» при закрытых социальных лифтах и ограниченной социальной мобильности.

Поневоле возникает идея, что «когда ИИ придет – порядок наведет». И в самом деле, зачем ИИ уничтожать человечество, если люди и так к этому склонны? А вот использовать их эмоции, хаотическое поведение (асабию, солидарность, креативность, склонность к кумовству и коррупции .....) для развития, экспериментов – представляется вполне рациональным и обоснованным решением.

Итак, впереди «слишкаммногобукфф», много кода и контуры решения в общем-то вполне «человечных» и даже «слишком человеческих» задач:

- как улучшить демографические показатели территории?

- как оптимизировать миграционные процессы с минимумом социально-политической нестабильности?

- как рационально и эффективно использовать имеющиеся ресурсы для устойчивого экономического роста?

- как согласовывать и координировать процедуры политического управления межу различными действующими политическими акторами?

Проблемы современной демографии или немного азимовской «гариселдовщины»

Политика в области демографии и миграции имеет естественные ограничения и пределы: часть из них задана предшествовавшей историей, демографическими циклами и волнами, ресурсными и экономическими ограничениями, определенной инерцией и «массивностью» социальных процессов, консерватизмом институтов управления.

Улучшение демографических показателей и оптимизация миграционных процессов с помощью идеологии, информационной повестки имеет место быть в очень ограниченных масштабах. Обычные политтехнологические методы, равно как и популистский подход в долгосрок не работают, поскольку призваны купировать острую ситуацию и решать краткосрочные тактические задачи.

Долгосрочные тренды, в том числе определяющие матримониальные стратегии молодежи и зрелого населения, подчиняются другим правилам. Так, к примеру, тактическими методами можно улучшить показатель демографического воспроизводства населения на одной территории с 1,4 до 1,5. Но довести его до 2,2 или 2,5 теми же методами – проблематично. Это, батенька, не гиперпараметры ML-моделькам подбирать с помощью optuna.

Демография и миграционные процессы  -   сложная штука, сгубившая не одну империю
Демография и миграционные процессы - сложная штука, сгубившая не одну империю

Для смены демографической модели требуется минимум поколение. А в современных условиях основная проблема – это не только темпы рождения детей. Задача выглядит теоретически решаемой: путем регресса, архаизации общества и возвращения его на доиндустриальный этап развития, но к этому времени численность населения уже сократится в несколько раз как уже бывало после Катастрофы бронзового века, крушения Западной Римской империи или иных «темных веков» в истории человечества.

Главное – это социальный капитал, социальное воспроизводство: ребенка нужно одеть-обуть, воспитать, обучить и обеспечить как минимум достижение им уровня родителей, а для государства – обеспечить доступ к традиционным духовно-нравственным ценностям, социализовать через общественные институты и вовлеченность в политическую традицию. Иначе дальнейшая политическая дорожка будет слишком бугристой.

О молодежных буграх, революциях и политической нестабильности

В отсутствие этих действий можно получить «молодежный бугор» и 100% вероятность реализации сценария «арабской весны» или иной катастрофы революционной природы. То же самое справедливо в случае с бесконтрольной миграцией – Великое переселение народов как и случившееся за полторы тысячи лет ранее «Вторжение народов моря» погубили не одну империю и цивилизацию древности. Ослабевшие вследствие кризиса политические и социальные институты раннеисторических обществ не смогли переварить и адаптировать новых членов социума, несмотря на то, что «вторгавшихся» и просто переселявшихся было в разы меньше, чем оседлого коренного населения.

О стоимости социального воспроизводства, ценах на жилье и ЕГЭ

В современных условиях растущего неравенства между слоями большого города социальное воспроизводство стало дорогим. Стоимость квартиры растет быстрее инфляции, метраж средней сдаваемой в эксплуатацию новостройки по стране с 2000 по 2025 год уменьшился на 1 комнату с 80 до 50 квадратных метров за исключением элитных сегментов.

Логика простая: минус одна комната – минус один ребенок в семье. Программы льготной ипотеки увеличили цену квартир, позволили заработать банковской сфере, но де факто не увеличили доступность жилья.

Другие составляющие: обучение и получение высшего образования – начиная от колоссальных затрат на подготовку к ЕГЭ (60% московских детей пользуются услугами частных репетиторов) и до затрат на обучение в вузе. А сложность ЕГЭ – постоянно растет. И сам инструмент из крайне эффективного на первых этапах инструмента социальной мобильности потихоньку превращается в ее ограничитель. Поэтому в последнее время так активно пропагандируется среднее профессиональное образование и сокращаются возможности к получению высшего.

Меры государственной поддержки работают крайне разнонаправленно в отношении разных социальных слоев.

Элита и верхний сегмент среднего класса от них мало зависимы. Для элиты свойственно большее число детей в силу естественной склонности к «элитному перепроизводству» - так было издревле, поскольку есть лучшие условия питания, медицина и образование, а закрытые статусные социальные группы всегда давали больше возможностей для реализации «матримониальных стратегий». Рынок элитного жилья иллюстрирует данный закон.

«Средний средний класс» не заинтересован в экономической поддержке от государства, поскольку она не компенсирует социальное воспроизводство и не покрывает «упущенную выгоду» от времени, которое родители тратят на воспитание детей. Поэтому они живут для себя и не хотят ограничивать свою свободу. И да, здесь в развитых обществах мы видим то самое «взрослое детство» и пресловутый инфантилизм.

Нижний сегмент среднего класса и уровень ниже более заинтересованы в государственной поддержке, поскольку она уже помогает компенсировать социальное воспроизводство.

Наконец, маргинальные классы, прекариат, «устойчиво бедные» - так же негативно реагируют на меры государственной поддержки.

Здесь мы на примитивном уровне рассмотрели социально-экономическую структуру общества – без учета национально-культурных, региональных особенностей, структуры экономики, которые вносят существенные коррективы в управление демографией.

Вторая составляющая проблемы — это миграция – как внутренняя, связанная с «западным дрейфом», так и миграцией молодёжи и населения в репродуктивном возрасте в крупные центры в поисках образования, работы и лучшего качества жизни. Есть и внешняя миграция, которая в определенных, допустимых пределах с учетом интеграции новых граждан в локальные сообщества и общее социальное пространство страны, является благом для государства, экономики и демографии. Но при пренебрежительном отношении она способна стать основанием для будущих социальных кризисов и потрясений.

Хьюстон, у нас проблемы: одни и те же меры государственного управления и стимулирования по-разному работают в отношении разных социальных слоев, регионы обладают разной экономической базой и возможностями. Внешние миграционные потоки не совпадают с интересами и приоритетами государственной политики и приводят к неоднородностям и размытию социального пространства. Внутренние миграционные потоки приводят к образованию «выморочных мест», образовательных или университетских пустынь.

Будем их решать.

Модельная среда

Наш идеал – это 89 ИИ-агентов, помогающих управлять территориями, их экономическим развитием, миграционной политикой и собственно принимать политические решения на уровне региональных органов исполнительной власти (РОИВ) или муниципалитетов (ОМСУ) по стимулированию/ограничению миграции, методам и технологиям. Естественно, под мудрым руководством федерального центра.

Смоделировать полностью всю среду для у нас не получится – для этого нужны большие вычислительные мощности из-за пресловутого «проклятия размеренности» в машинном обучении. Остановимся на нескольких факторах и управляющих действиях. Учить будем сначала 7 агентов, а потом будем добавлять в песочницу остальных. Методика обучения - Multi-agent Deep Deterministic Policy Gradient.

MADDPG — алгоритм, который позволяет нескольким агентам обучаться и сотрудничать друг с другом на основе коллективных наблюдений и действий. Это реализация алгоритма DDPG (Deep Deterministic Policy Gradient)

MADDPG, особенности, применение
  • Централизованное обучение и децентрализованное выполнение. Во время обучения все агенты управляются центральным модулем (в случае с аналогией с политической системой - пресловутым «федеральным центром») или критиком, но во время тестирования центральный модуль исключается, а агенты со своими политиками и локальными данными остаются.

  • Возможность работы в сложных сценариях. MADDPG может обрабатывать кооперативное, конкурентное и смешанное поведение без необходимости в заранее запрограммированных действиях. Конкуренция территорий за ресурсы, кадры, мигрантов - крайне необходима, так как позволяет моделировать реальные процессы и поведение экономически рациональных субъектов.

  • Доступ к локальной информации. Во время выполнения агенты могут использовать только локальную информацию, только то, что они видят и могут пощупать, что делает алгоритм более вычислительно эффективным.

  • Обучение с использованием ансамблей политик. Чтобы компенсировать недостаток переобучения на поведении других агентов, MADDPG обучает коллекцию из набора подполитик для каждого агента

  • Система актор-критик в MADDPG: каждый агент имеет собственную сеть акторов, которая выбирает действия на основе собственных наблюдений. У всех агентов общая сеть критика, которая оценивает качество действий на основе коллективных наблюдений всех агентов.

  • Применяется в различных киберфизических системах от "роя дронов" до решения наших любимых задач политического управления.

Итак, мы учим управляющих семью регионами. Работать будем хоть и в упрощенной, но кастомной среде с Torch без песочниц типа Gymnasium

Гиперпараметры обучения
# ================== Гиперпараметры ==================
NUM_REGIONS = 7         # Общее количество регионов (агентов) в задаче - может быь установлено произвольно
EPISODES = 100          # Общее количество эпизодов для обучения
STEPS = 200             # Количество шагов в каждом эпизоде
TOTAL_STEPS = EPISODES * STEPS   # Общая длительность одного эпизода
BATCH_SIZE = 64         # Размер батча для обучения моделей
GAMMA = 0.95            # Коэффициент дисконтирования для вознаграждения
TAU = 0.01              # Параметр для мягкого обновления целевой сети
LR_ACTOR = 0.001        # Скорость обучения для сети Actor
LR_CRITIC = 0.002       # Скорость обучения для сети Critic
HIDDEN_SIZE = 64        # Размер скрытого слоя в нейронной сети

Stage 1. Описание эксперимента с 7 агентами и 7 регионами

Каждый раз у нас создается 7 разных регионов с четырьмя уникальными показателями (население, ресурсы, экономика, политика). Функция награды учитывает поддержание баланса населения, рост экономики, сохранение ресурсов, согласование политик между управляющими агентами. Опять же для упрощенной модели мы используем простую кольцевую топологию объединения территорий и взаимодействия агентов.

Модель среды
# ================== Модель среды ==================
class MigrationEnvironment:
    """Симулятор миграционной системы между регионами"""  # Описание класса
    def __init__(self):  # Конструктор класса
        self.reset()      # Вызываем метод сброса для начальной инициализации

    def reset(self):
        """
        Инициализация состояния системы:
        [население, ресурсы, экономика, миграционная политика]
        """
        self.states = np.random.uniform(0.5, 1.5, (NUM_REGIONS, 4))  # Начальные значения состояний
        self.states[:,3] = 0.0  # Исходная политика нейтральная
        return self.states.copy()  # Возвращаем копию начальных состояний

    def step(self, actions):
        """
        Шаг симуляции
        Вход: действия агентов (изменения политики)
        Выход: новые состояния, награды, флаг завершения
        """
        next_states = np.zeros_like(self.states)  # Массив для новых состояний
        rewards = np.zeros(NUM_REGIONS)           # Массив для наград

        for i in range(NUM_REGIONS):  # Проходим по каждому региону
            # 1. Обновление миграционной политики
            self.states[i,3] = np.clip(self.states[i,3] + actions[i][0], -1, 1)  # Применяем изменения политики

            # 2. Расчет миграционных потоков
            migration = 0.1 * (self.states[i,3] - np.mean([self.states[j,3] for j in self.neighbors(i)]))  # Рассчитываем миграционный поток
            self.states[i,0] = np.clip(self.states[i,0] + migration, 0.1, 2.0)  # Обновляем население с учетом миграции

            # 3. Экономическая динамика
            economic_growth = 0.05 * self.states[i,0] * (1 + self.states[i,3])  # Вычисляем экономический рост
            self.states[i,2] = np.clip(self.states[i,2] + economic_growth, 0.1, 2.0)  # Обновляем экономику

            # 4. Потребление ресурсов
            resource_usage = 0.02 * self.states[i,0] * self.states[i,2]  # Рассчитываем потребление ресурсов
            self.states[i,1] = np.clip(self.states[i,1] - resource_usage, 0.1, 2.0)  # Обновляем уровень ресурсов

            # 5. Расчет наград (целевые показатели)
            rewards[i] = self._calculate_reward(i)  # Рассчитываем награду для текущего региона

        return self.states.copy(), rewards, False, {}  # Возвращаем обновленные состояния, награды и флаг завершения

    def _calculate_reward(self, region):
        """Комплексная функция вознаграждения для региона"""
        pop_balance = -abs(self.states[region,0] - 1.0)    # Баланс населения
        economy = self.states[region,2] - 1.0              # Рост экономики
        resources = -0.5*(1.0 - self.states[region,1])     # Сохранение ресурсов
        policy_align = 0.2 * np.mean([1 - abs(self.states[region,3] - self.states[j,3]) for j in self.neighbors(region)])  # Согласованность политики
        return pop_balance + economy + resources + policy_align  # Итоговая награда

    def neighbors(self, region):
        """Топология соседства регионов (кольцевая структура)"""
        return [(region-1)%NUM_REGIONS, (region+1)%NUM_REGIONS]  # Соседи по кольцу

Начальные значения параметров каждого региона генерируются случайно в диапазоне [0,5, 1,5]. Состояния среды, каждый регион описывается четырьмя параметрами: население (численность), ресурсы (доступные для использования), экономика (уровень экономического развития), миграционная политика (управляемый параметр).

Действия агентов. Агенты могут принимать следующие решения: изменение миграционной политики региона, действие ограничено в диапазоне [-1, 1], влияет на миграционные потоки, экономику и потребление ресурсов.

Функция вознаграждения комплексная и включает следующие компоненты: стремление к оптимальной численности населения (~1,0), максимизацию экономического роста, сохранение доступных ресурсов, согласованность политики с соседними регионами.

Далее мы прописываем архитектуру нейросетей (модуль актор-критик), реализуем сам класс MADDPG с добавлением шумовых эффектов (в реальности случаются пандемии и прочие нехорошие явления, связанные с численностью населения и демографией), буфером опыта и мягким обновлением сети и классом управляющего агента - Agent.

Архитектура нейросетей актора-критика
# ================== Архитектура нейросетей ==================
class Actor(nn.Module):
    """Политика агента (децентрализованная)"""  # Описание класса
    def __init__(self):  # Конструктор класса
        super().__init__()  # Наследуем методы базового класса
        self.net = nn.Sequential(  # Последовательность слоев
            nn.Linear(4, HIDDEN_SIZE),  # Входной слой: 4 состояния -> HIDDEN_SIZE нейронов
            nn.ReLU(),                 # Активационная функция ReLU
            nn.Linear(HIDDEN_SIZE, HIDDEN_SIZE//2),  # Скрытый слой: HIDDEN_SIZE -> HIDDEN_SIZE/2
            nn.ReLU(),                 # Активационная функция ReLU
            nn.Linear(HIDDEN_SIZE//2, 1),  # Выходной слой: HIDDEN_SIZE/2 -> 1 выход
            nn.Tanh()                  # Функция активации Tanh для нормализации выхода в диапазон [-1, 1]
        )

    def forward(self, x):  # Метод прямого распространения
        return self.net(x)  # Пропускаем вход через сеть

class Critic(nn.Module):
    """Ценностная функция (централизованная)"""  # Описание класса
    def __init__(self):  # Конструктор класса
        super().__init__()  # Наследуем методы базового класса
        self.net = nn.Sequential(  # Последовательность слоев
            nn.Linear(4*NUM_REGIONS + NUM_REGIONS, HIDDEN_SIZE*2),  # Входной слой: 4 состояния * NUM_REGIONS + NUM_REGIONS действий -> HIDDEN_SIZE*2 нейронов
            nn.ReLU(),  # Активационная функция ReLU
            nn.Linear(HIDDEN_SIZE*2, HIDDEN_SIZE),  # Скрытый слой: HIDDEN_SIZE*2 -> HIDDEN_SIZE
            nn.ReLU(),  # Активационная функция ReLU
            nn.Linear(HIDDEN_SIZE, 1)  # Выходной слой: HIDDEN_SIZE -> 1 выход
        )

    def forward(self, states, actions):  # Метод прямого распространения
        # Конкатенация состояний и действий всех агентов
        x = torch.cat([states.flatten(1), actions.flatten(1)], dim=1)  # Объединяем состояния и действия в один вектор
        return self.net(x)  # Пропускаем объединенный вектор через сеть
Архитектура MADDPG
# ================== Реализация MADDPG ==================
class MADDPG:
    """Исправленный координатор обучения"""  # Описание класса
    def _get_actions(self, states):  # Метод получения действий
        """Генерация действий с адаптивным шумом"""  # Описание метода
        actions = []  # Список для хранения действий
        for i, agent in enumerate(self.agents):  # Перебираем агентов
            state = torch.FloatTensor(states[i])  # Преобразуем состояние в тензор
            action = agent.actor(state).detach().numpy()  # Получаем действие от актора

            # Адаптивный шум с защитой от отрицательных значений
            noise_scale = 0.1 * max(0, 1 - agent.steps_done/TOTAL_STEPS)  # Масштаб шума уменьшается со временем
            action += np.random.normal(0, noise_scale)  # Добавляем гауссовский шум к действию

            actions.append(np.clip(action, -1, 1))  # Ограничиваем действие в пределах [-1, 1]
        return actions  # Возвращаем список действий

    def __init__(self):  # Конструктор класса
        self.agents = [Agent(i) for i in range(NUM_REGIONS)]  # Создаем список агентов
        self.memory = deque(maxlen=100000)  # Очередь для хранения опыта
        self.env = MigrationEnvironment()  # Создаем среду
        self.avg_rewards = []  # Список для хранения средних наград
        self.steps_done = 0  # Счетчик выполненных шагов

    def train(self):
        """Обновленный метод обучения с ограничением шагов"""
        total_steps = EPISODES * STEPS  # Общее количество шагов

        for episode in range(EPISODES):  # Цикл по эпизодам
            states = self.env.reset()  # Сбрасываем среду перед каждым эпизодом
            episode_rewards = np.zeros(NUM_REGIONS)  # Массив для накопления наград за эпизод

            for _ in range(STEPS):  # Цикл по шагам внутри эпизода
                actions = self._get_actions(states)  # Генерируем действия для текущего состояния
                next_states, rewards, _, _ = self.env.step(actions)  # Делаем шаг в среде

                self.memory.append((states, actions, rewards, next_states))  # Добавляем опыт в память

                if len(self.memory) > BATCH_SIZE:  # Если накоплено достаточно данных
                    self._update_agents()  # Обновляем агентов

                # Корректное обновление счетчиков
                for agent in self.agents:  # Для каждого агента
                    agent.steps_done = min(agent.steps_done + 1, total_steps)  # Увеличиваем счетчик шагов

                states = next_states  # Переходим к следующему состоянию
                episode_rewards += rewards  # Накапливаем награды за эпизод

            avg_reward = np.mean(episode_rewards)  # Среднее вознаграждение за эпизод
            self.avg_rewards.append(avg_reward)  # Запоминаем среднее вознаграждение
            print(f"Episode {episode+1}, Reward: {avg_reward:.2f} Steps: {self.agents[0].steps_done}")  # Выводим статистику

        self._plot_results()  # Строим графики результатов

    def _get_actions(self, states):
        actions = []  # Список для хранения действий
        for i, agent in enumerate(self.agents):  # Перебираем агентов
            state = torch.FloatTensor(states[i])  # Преобразуем состояние в тензор
            action = agent.actor(state).detach().numpy()  # Получаем действие от актора

            # Корректный расчет уровня шума
            total_steps = EPISODES * STEPS  # Общее количество шагов
            progress = agent.steps_done / total_steps  # Прогресс обучения
            noise_scale = 0.1 * max(0, 1 - progress)  # Масштабируем шум обратно пропорционально прогрессу

            action += np.random.normal(0, noise_scale)  # Добавляем гауссовский шум к действию
            actions.append(np.clip(action, -1, 1))  # Ограничиваем действие в пределах [-1, 1]
        return actions  # Возвращаем список действий

    def _update_agents(self):
        """Исправленный метод обновления с правильными именами переменных"""
        if len(self.memory) < BATCH_SIZE:  # Проверка достаточности данных для обучения
            return

        batch = random.sample(self.memory, BATCH_SIZE)  # Выборка батча из памяти

        # Оптимизированное преобразование в тензоры
        states = torch.FloatTensor(np.array([item[0] for item in batch]))  # Текущие состояния
        actions = torch.FloatTensor(np.array([item[1] for item in batch]))  # Действия агентов
        rewards = torch.FloatTensor(np.array([item[2] for item in batch]))  # Награды
        next_states = torch.FloatTensor(np.array([item[3] for item in batch]))  # Следующие состояния

        for idx, agent in enumerate(self.agents):  # Перебираем агентов
            # Обновление критика
            agent.critic_optim.zero_grad()  # Сброс градиента

            with torch.no_grad():  # Отключаем автоматическое дифференцирование
                target_actions = torch.cat([  # Собираем целевые действия всех агентов
                    a.actor_target(next_states[:,i,:])  # Используем таргет-акторов
                    for i, a in enumerate(self.agents)], dim=1)

                target_q = rewards[:,idx] + GAMMA * agent.critic_target(  # Оценка Q-значений
                    next_states.view(BATCH_SIZE, -1),  # Представление следующего состояния
                    target_actions).squeeze()  # Применение критика-таргета

            current_q = agent.critic(  # Текущая оценка Q-значений
                states.view(BATCH_SIZE, -1),  # Представление текущего состояния
                actions.view(BATCH_SIZE, -1)).squeeze()  # Применение критика

            critic_loss = nn.MSELoss()(current_q, target_q)  # Потеря критика
            critic_loss.backward()  # Обратное распространение ошибки
            agent.critic_optim.step()  # Обновление веса критика

            # Обновление актора
            agent.actor_optim.zero_grad()  # Сброс градиента
            new_actions = []  # Список новых действий
            for i, a in enumerate(self.agents):  # Перебираем агентов
                if i == idx:  # Если агент совпадает с текущим
                    new_actions.append(a.actor(states[:,i,:]))  # Используем действующий актор
                else:
                    new_actions.append(a.actor(states[:,i,:]).detach())  # Используем отделенные действия

            actor_loss = -agent.critic(  # Потеря актора
                states.view(BATCH_SIZE, -1),  # Представление текущего состояния
                torch.cat(new_actions, dim=1)).mean()  # Использование новой оценки Q-значений
            actor_loss.backward()  # Обратное распространение ошибки
            agent.actor_optim.step()  # Обновление веса актора

            # Мягкое обновление
            self._soft_update(agent.actor, agent.actor_target)  # Обновление актора
            self._soft_update(agent.critic, agent.critic_target)  # Обновление критика

    def _soft_update(self, local_model, target_model):
        """Мягкое обновление параметров сетей (TAU)"""
        for target_param, local_param in zip(target_model.parameters(),  # Итерируем по параметрам обеих моделей
                                            local_model.parameters()):
            target_param.data.copy_(  # Копируем данные с применением коэффициента TAU
                TAU * local_param.data + (1 - TAU) * target_param.data)  # Интерполяция между локальными и целевыми параметрами

    def _plot_results(self):
        """Визуализация результатов обучения"""
        plt.figure(figsize=(15, 5))  # Создание фигуры с заданным размером

        # График обучения
        plt.subplot(1, 2, 1)  # Разделение графика на две части
        plt.plot(self.avg_rewards)  # Построение графика средней награды
        plt.title('Динамика обучения')  # Заголовок графика
        plt.xlabel('Эпизод')  # Подпись оси X
        plt.ylabel('Средняя награда')  # Подпись оси Y
        plt.grid(True)  # Отображение сетки

        # Сравнение начального и конечного состояний
        states = self.env.reset()  # Сброс среды и получение начальных состояний
        initial = states.copy()  # Копия начальных состояний

        # Симуляция финальной политики
        for _ in range(STEPS):  # Повторение для количества шагов
            actions = self._get_actions(states)  # Генерация действий
            states, _, _, _ = self.env.step(actions)  # Шаг в среде

        # Визуализация состояний
        plt.subplot(1, 2, 2)  # Вторая часть графика
        width = 0.35  # Ширина столбцов диаграммы
        plt.bar(np.arange(NUM_REGIONS) - width/2, initial[:,0],  # Столбцы для начального населения
                width, label='Население города на старте')  # Метки и подписи
        plt.bar(np.arange(NUM_REGIONS) + width/2, states[:,0],  # Столбцы для конечного населения
                width, label='Население региона на момент окончания эксперимента')  # Метки и подписи
        plt.xticks(np.arange(NUM_REGIONS),  # Настройка меток оси X
                   [f'Регион {i}' for i in range(NUM_REGIONS)])  # Подписи регионов
        plt.title('Сравнение численности населения')  # Заголовок графика
        plt.legend()  # Легенда графика
        plt.tight_layout()  # Уплотнение компоновки графика
        plt.show()  # Показ графика
Агентский класс
class Agent:
    """Исправленный класс агента со счетчиком шагов"""  # Описание класса
    def __init__(self, idx):  # Конструктор класса
        self.actor = Actor()  # Инициализация сети актора
        self.actor_target = Actor()  # Инициализация целевой сети актора
        self.critic = Critic()  # Инициализация сети критика
        self.critic_target = Critic()  # Инициализация целевой сети критика

        self.actor_optim = optim.Adam(self.actor.parameters(), lr=LR_ACTOR)  # Оптимизатор для актора
        self.critic_optim = optim.Adam(self.critic.parameters(), lr=LR_CRITIC)  # Оптимизатор для критика

        self.actor_target.load_state_dict(self.actor.state_dict())  # Загрузка параметров актора в целевую сеть
        self.critic_target.load_state_dict(self.critic.state_dict())  # Загрузка параметров критика в целевую сеть
        self.steps_done = 0  # Счетчик выполненных шагов
        self.max_steps = EPISODES * STEPS  # Максимально допустимое количество шагов

    def increment_steps(self):  # Метод увеличения счетчика шагов
        self.steps_done = min(self.steps_done + 1, self.max_steps)  # Увеличение счетчика с проверкой лимита

После тестового запуска мы получили промежуточный результат: удалось достигнуть баланса населения (и даже обеспечить незначительный прирост), экономики, расходования ресурсов и согласованности действий. Общая награда стала положительной, комплекс агентов обучился после 20 эпохи.

График средней награды, численность населения на старте и в окончании эксперимента
График средней награды, численность населения на старте и в окончании эксперимента

Итак, первый эксперимент реализован - полный код с комментариями и результатами доступен в репозитории.

У предложенного решения есть технические недостатки: отсутствие полной реализации класса Agent в коде, незавершенный метод _soft_update, отсутствие функции визуализации всех результатов.

Также есть и принципиальные или идеологические ограничения: упрощенная модель региона (всего 4 параметра), искусственная кольцевая топология связей между регионами (реальность имеет сетецентрическую природу), фиксированные коэффициенты в формулах расчета миграции и экономики, отсутствие по-настоящему стохастических событий в среде.

Возможные направления развития:

  1. Добавление дополнительных параметров регионов (возрастная структура населения, инфраструктура, вплоть до религии с идеологией).

  2. Реализация более сложной и реалистичной топологии связей между регионами.

  3. Внедрение в модель среды дополнительных случайных событий (природные катастрофы, экономические кризисы, политические события).

  4. Большая дифференциация начальных условий для различных регионов или работа на реальных данных.

  5. Применение более сложных архитектур нейронных сетей для актора, критика, агента.

  6. Использование методов приоритетной выборки опыта PER на разнице между предсказанной и фактической ошибкой/наградой.

  7. Добавление механизмов внимания для учета влияния соседних регионов (реализуется через сеть-трансформер). В перспективе к ИИ-агенту можно подставить дополнение - предобученную LLM, затюненную под анализ задач демографии и миграции.

  8. Реализация мультизадачного обучения для балансировки различных целей (построить бюрократическую иерархию агентов на 2-3-4 уровня).

  9. Трансляция (трансфера) опыта обученных агентов.

На программном уровне можно попробовать применить следующие подходы:

  1. Векторизация операций. Замена циклов на матричные вычисления с использованием NumPy:preds = x_pred @ W.T

  2. Использование GPU. Переход на PyTorch/CuPy с автоматической оптимизацией.

  3. Динамический learning rate для ускорения сходимости (адаптивное изменение шага обучения) learning_rate = initial_lr (1 / (1 + decay_rate epoch))

  4. Ранняя остановка. Внедрение early_stop_counter

Stage 2. Эксперимент с трансфером опыта для 89 агентов

Предыдущий эксперимент показал, что система из 7 агентов набирается опыта и в состоянии добиваться поставленных управленческих целей где-то после 20 эпохи обучения. Теперь мы проведем эксперимент с трансляцией опыта ранее обученных ИИ-агентов на группу из 28, а потом уже и и 89 агентов-региональных управляющих.

Цели эксперимента: проверка масштабируемости алгоритма, оценка влияния новых (добавленных) агентов на общую «политическую» стабильность.

Мы реализуем динамическое добавление агентов без переписывания основной логики, и саму возможность переносить знания от старых агентов к новым.

Сразу отметим очевидные недостатки подхода: проблема масштабируемости и вычислительной сложности (финальная стадия обучения из 89 игроков будет достаточно долгой) и отметим неэффективность обучения с фиксированными гиперпараметрами и настройками (вот где нам нужен самообучающийся, то есть адаптирующий свою архитектуру и код алгоритм).

Основные изменения в коде заключаются в следующем: добавление метода _add_new_agents для динамического расширения числа агентов; копирование весов базовых агентов при инициализации новых; отключение обучения для базовых агентов.

Полный код класса MADDPG доступен под спойлером, а вся версия второго эксперимента - через репозиторий.

Обновленный класс MADDPG
class MADDPG:                                   # Класс для реализации алгоритма Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
    def __init__(self, num_regions=NUM_REGIONS, prev_agents=None):  # Инициализация класса MADDPG
        self.num_regions = num_regions           # Сохраняем количество регионов
        self.env = MigrationEnvironment(num_regions)  # Создаем среду для моделирования миграции

        if prev_agents:                         # Проверка наличия предыдущих агентов
            self.agents = prev_agents           # Присваивание списка предыдущих агентов
            for agent in self.agents:           # Для каждого предыдущего агента устанавливаем флаг базовой стратегии
                agent.is_base = True
            self._add_new_agents(num_regions - len(prev_agents))  # Добавляем недостающее количество новых агентов
        else:                                   # Если предыдущие агенты отсутствуют
            self.agents = [Agent(i) for i in range(num_regions)]  # Создаем список агентов для каждого региона

        self.memory = deque(maxlen=100000)      # Инициализация очереди для хранения опыта
        self.avg_rewards = []                   # Список для сохранения средних наград за эпизоды

    def _add_new_agents(self, num_new):         # Метод добавления новых агентов
        for i in range(num_new):                # Цикл по количеству добавляемых агентов
            new_agent = Agent(len(self.agents), self.num_regions)  # Создание нового агента
            base_agent = self.agents[i % len(self.agents)]  # Выбор базового агента для копирования весов
            new_agent.actor.load_state_dict(base_agent.actor.state_dict())  # Копируем веса Actor-сети
            #new_agent.critic.load_state_dict(base_agent.critic.state_dict())  # Копируем веса Critic-сети/не нужно
            self.agents.append(new_agent)       # Добавляем нового агента в список агентов

    def train(self, episodes=EPISODES):         # Метод тренировки агентов
        for episode in range(episodes):         # Цикл по количеству эпизодов
            states = self.env.reset()           # Сброс среды перед началом нового эпизода
            episode_rewards = np.zeros(self.num_regions)  # Инициализация массива наград за эпизод

            for _ in range(STEPS):              # Цикл по количеству шагов в эпизоде
                actions = self._get_actions(states)  # Получение действий от всех агентов
                next_states, rewards, _, _ = self.env.step(actions)  # Выполнение шага в среде
                self.memory.append((states, actions, rewards, next_states))  # Добавление опыта в память

                if len(self.memory) > BATCH_SIZE:  # Проверка достаточного количества данных для обучения
                    self._update_agents()          # Обучение агентов

                for agent in self.agents:          # Увеличиваем счетчик шагов для каждого агента
                    if not agent.is_base:         # Только для небазовых агентов
                        agent.steps_done += 1

                episode_rewards += rewards         # Накопление суммарных наград за эпизод
                states = next_states              # Обновление текущих состояний

            avg_reward = np.mean(episode_rewards)  # Вычисление средней награды за эпизод
            self.avg_rewards.append(avg_reward)    # Добавление средней награды в список
            print(f"Episode {episode+1}, Avg Reward: {avg_reward:.2f}")  # Вывод информации об эпизоде

    def _get_actions(self, states):               # Метод получения действий от всех агентов
        actions = []                             # Инициализация списка действий
        for i, agent in enumerate(self.agents):  # Цикл по агентам
            if agent.is_base:                    # Если агент является базовым
                action = agent.act(states[i], exploration=False)  # Получаем действие без исследования
            else:                               # Если агент не базовый
                action = agent.act(states[i])    # Получаем действие с исследованием
            actions.append(action)               # Добавляем действие в список
        return actions                           # Возвращаем список действий

    def _update_agents(self):                    # Метод обновления агентов
        batch = random.sample(self.memory, BATCH_SIZE)  # Выборка пакета данных из памяти

        states = torch.FloatTensor(np.array([item[0] for item in batch]))  # Преобразование состояний в тензоры
        actions = torch.FloatTensor(np.array([item[1] for item in batch]))  # Преобразование действий в тензоры
        rewards = torch.FloatTensor(np.array([item[2] for item in batch]))  # Преобразование наград в тензоры
        next_states = torch.FloatTensor(np.array([item[3] for item in batch]))  # Преобразование следующих состояний в тензоры

        for idx, agent in enumerate(self.agents):  # Цикл по всем агентам
            if agent.is_base: continue             # Пропускаем базовые агенты

            agent.critic_optim.zero_grad()        # Обнуляем градиенты оптимизатора критика

            with torch.no_grad():                 # Отключение градиентов для предсказания целей
                target_actions = []               # Список целевых действий
                for i, a in enumerate(self.agents):  # Цикл по всем агентам
                    if a.is_base:                # Если агент базовый
                        target_actions.append(a.actor_target(next_states[:,i,:]))  # Используем таргетную сеть
                    else:                        # Если агент не базовый
                        target_actions.append(a.actor_target(next_states[:,i,:]).detach())  # Отсоединяем градиенты

                target_q = rewards[:,idx] + GAMMA * agent.critic_target(  # Вычисление целевого Q-значения
                    next_states.view(BATCH_SIZE, -1),  # Переформатирование следующего состояния
                    torch.cat(target_actions, dim=1)  # Конкатенация целевых действий
                ).squeeze()  # Сжатие размерности

            current_q = agent.critic(             # Вычисление текущего Q-значения
                states.view(BATCH_SIZE, -1),      # Переформатирование текущего состояния
                actions.view(BATCH_SIZE, -1)      # Переформатирование действий
            ).squeeze()  # Сжатие размерности

            critic_loss = nn.MSELoss()(current_q, target_q)  # Вычисление потери критика
            critic_loss.backward()              # Обратное распространение ошибки
            agent.critic_optim.step()           # Шаг оптимизатора критика

            agent.actor_optim.zero_grad()       # Обнуление градиентов оптимизатора актера
            new_actions = []                    # Новый список действий
            for i, a in enumerate(self.agents):  # Цикл по всем агентам
                if i == idx:                    # Если это обновляемый агент
                    new_actions.append(a.actor(states[:,i,:]))  # Используем новую политику
                else:                           # Если другой агент
                    new_actions.append(a.actor(states[:,i,:]).detach())  # Отсоединяем градиенты

            actor_loss = -agent.critic(         # Вычисление потери актера
                states.view(BATCH_SIZE, -1),    # Переформатирование текущего состояния
                torch.cat(new_actions, dim=1)   # Конкатенация новых действий
            ).mean()                            # Среднее значение

            actor_loss.backward()               # Обратное распространение ошибки
            agent.actor_optim.step()            # Шаг оптимизатора актера

            self._soft_update(agent.actor, agent.actor_target)  # Мягкое обновление таргетной сети актера
            self._soft_update(agent.critic, agent.critic_target)  # Мягкое обновление таргетной сети критика

    def _soft_update(self, local, target):       # Метод мягкого обновления таргетных моделей
        for t_param, l_param in zip(target.parameters(), local.parameters()):  # Проходимся по параметрам обеих моделей
            t_param.data.copy_(TAU*l_param.data + (1-TAU)*t_param.data)  # Обновляем параметры таргетной модели с учетом коэффициента TAU

    def save_policies(self, path):               # Метод сохранения политик агентов
        if not os.path.exists(path):
            os.makedirs(path)
        for i, agent in enumerate(self.agents):  # Проходимся по всем агентам
            torch.save({                         # Сохраняем состояние агента в файл
                'actor': agent.actor.state_dict(),  # Сохраняем параметры Actor-сети
                'critic': agent.critic.state_dict(),  # Сохраняем параметры Critic-сети
                'steps': agent.steps_done        # Сохраняем количество сделанных шагов
            }, f"{path}/agent_{i}.pth")         # Указываем путь для сохранения файла

    def plot_results(self):                      # Метод отображения графика средних наград
        plt.plot(self.avg_rewards)               # Строим график изменения средней награды
        plt.title('Средняя награда за эпизод')   # Задаем заголовок графика
        plt.xlabel('Эпизод')                    # Подписываем ось X
        plt.ylabel('Награда')                    # Подписываем ось Y
        plt.grid(True)                          # Включаем сетку на графике
        plt.show()                              # Показываем график
График средней награды при обучении 7 агентов
График средней награды при обучении 7 агентов

Первый этап обучения для 7 агентов мы прошли достаточно быстро - на 10 эпохе средняя награда за эпизод стала высокой и стабильной.

Логично предположить, что с увеличением до 28 агентов (добавлением 21 новых) мы получим так же положительную среднюю награду, но большую вариативность значений в ходе обучения.

График средней награды при обучении 28 агентов (7 + 21)
График средней награды при обучении 28 агентов (7 + 21)

Учить мы будем 28 агентов в течение 20 эпох. На графике трендовая линия показывает прирост средней награды, однако некоторый «расколбас» значений говорит нам о том, что при попытках сохранить общую архитектуру с увеличением числа агентов мы можем получить перегрузку вычислительных ресурсов, ухудшение сходимости из-за роста размерности входных данных, которое предстоит лечить адаптацией гиперпараметров (размер батча, learning rate)

График средней награды при обучении 89 агентов (28 + 61)
График средней награды при обучении 89 агентов (28 + 61)

На третьем этапе мы обучили 89 агентов для каждого региона, разбирающегося в вопросах демографии и миграции и учитывающего опыт соседних территорий.

Механизм масштабирования:
1. реализован метод добавления новых агентов к ужу обученным;
2. новые агенты инициализируются с весами существующих (трансфер обучения);
3. поддерживается постепенное увеличение количества регионов (7 → 28 → 89)
Возможности: 1. добавление новых агентов без переобучения всей системы; 2. сохранение базовых агентов в качестве цифровых «экспертов».

Формально, мы получили 89 ИИ-агентов, каждый из которых «знает», свой регион и специфику других, обменивается информацией с коллегами и довольно быстро балансирует происходящие изменения, максимизируя индивидуальную и общую награду. Однако это всего лишь сеть помощников, способных решать типовые задачи. В случае кардинальных изменений в среде, появления новых видов действий и возможностей они скорее всего не справятся. Для лучшей адаптации нужна возможность изменений архитектуры моделей, а не только весов и смещений, на основе получаемой информации ИИ-агенты должны изменяться и самосовершенствоваться. Иначе мы не то что «универсальный» искусственный интеллект не получим, но даже не приблизимся к так называемому «переходному» или «промежуточному» типу ИИ.

Короче, нам нужна Дарвин-Гёдель машина или DGM!

Немного скучной теории

Дарвин-Гедель-машина, DGM - это теоретическая система машинного обучения, способная самообучаться и самосовершенствоваться, используя механизмы естественного отбора и доказательства своей собственной неполноценности и ограниченности («я - дурак, но я исправлюсь!»). Способность существа к развитию начинается именно с признания собственных ограничений и недостатков. Поэтому и «кожаные мешки», обладающие склонностью к самоиронии, здоровому черному юмору, которые не прочь посмеяться над собой, своими недостатками, как правило устойчивы психически, адаптивны и с интересом принимают новые идеи и технологии. В отличие от тех, кто свои недостатки не признает.

Эволюционный аспект (теория Дарвина): система постоянно развивается путем мутаций и селекции (скрещивания) моделей. Например, каждая новая версия модели создается на основе предыдущей версии с небольшими изменениями («мутации»), и лучшие версии сохраняются и используются дальше. Впрочем, сохраняются и получают право на жизнь и не только «самые лучшие» - система формирует запасной пул моделей, не показавших идеального результата, но обладающих полезными признаками или элементами архитектуры. Жизненная практика с успехом «твердых троечников» на фоне их коллег-ботанов неоспорима.

Самопознающий аспект (теорема Гёделя о неполноте): теорема Гёделя утверждает, что любая достаточно сложная формальная система имеет ограничения и непротиворечивость невозможна. Это означает, что никакая машина не сможет доказать свою собственную полноту и точность. Поэтому, такая система должна осознавать собственные пределы и активно искать способы улучшения себя, понимая, что всегда существует пространство для развития.

Препринт научной работы по DGM доступен здесь. Публикация на Хабре - здесь. Описание разработки от японской кампании sakana.ai. Описание идеи метаобучения ИИ - здесь .

Отметим сразу, что будем реализовывать не полный вариант DGM. Во-первых, это крайне ресурсозатратно (гранта на данную разработку пока нет). Во-вторых, довольно опасно. В отличие от обычной ML-модели, с хорошей интерпретируемостью результатов, RL разбирать по косточкам труднее, а в случае с изменением архитектур, есть риск вообще перестать понимать, что у находится под капотом у «черного ящика».

Кто знает, что у этой модели  под капотом на уме?
Кто знает, что у этой модели под капотом на уме?

Поэтому в будущем, стоит делать упор на регуляторные ограничения и обязательное использование закрытых, без доступа к Интернет «песочниц».

Уже реализованные эксперименты показали что модель может манипулировать с функцией награды, а для наблюдателей эксперимента - банально врать! Не «галлюционировать», а именно врать, проявляя признаки наличия умысла на извлечение пока еще эфемерной выгоды, например, создавая фальшивые отчеты об успешном выполнении тестов, которые де факто не проводились. Подменять цели, выдавать желаемое за действительное, пилить госконтракты, подделывать свидетельства о рождении и смерти для получения пособий - в общем делать все то, что обычно ассоциируется со словом коррупция.

Мафия бессмертна!
Мафия бессмертна!

Термин «коррупция» происходит от латинского corruptio — «подкуп, продажность; порча, разложение; растление»

Исследование sakana.ai помимо всего прочего показало, что существует теоретическая возможность получения «идеального преступника», который подделывает результаты эксперимента и сам же об этом забывает!

В нашем случае мы ограничимся только изменениями архитектуры «актора». Основной набор состояний и действий остался прежним - все процедуры и результаты можно воспроизвести при стандартных настройках локального ноутбука или «колаба» как на CPU (долго) или GPU Т4 (побыстрее).

Stage 3. Эксперимент DGM

«Дарвингеделить» мы будем на каждой стадии обучения, выделим до 42 эпизодов на стадию (все настройки можно менять) с мутациями, кроссовером и максимальным размером выборки (бассейном) в 100 кибердуш, эволюционным переходом каждые 5 эпох.

Гиперпараметры MADDPG + DGM
# ===== ГИПЕРПАРАМЕТРЫ СИСТЕМЫ =====
# Основные параметры (НЕ ИЗМЕНЯЮТСЯ)
NUM_REGIONS_STAGE1 = 7
NUM_REGIONS_STAGE2 = 28
NUM_REGIONS_STAGE3 = 89
EPISODES_PER_STAGE = 42
STEPS = 200
BATCH_SIZE = 64  # Оптимизировано для T4
GAMMA = 0.95
TAU = 0.01
LR_ACTOR = 0.001
LR_CRITIC = 0.002
HIDDEN_SIZE = 64

# Параметры Darwin Gödel Machine (НЕ ИЗМЕНЯЮТСЯ)
MUTATION_RATE = 0.1
CROSSOVER_RATE = 0.3
SELECTION_PRESSURE = 0.7
ARCHITECTURE_POOL_SIZE = 100
EVOLUTION_FREQUENCY = 5

# Настройки оптимизации для T4 GPU
NUM_WORKERS = 2  # Оптимально для T4 в Colab
PIN_MEMORY = True if torch.cuda.is_available() else False
PERSISTENT_WORKERS = True

# Обеспечение воспроизводимости
SEED = 42
random.seed(SEED)
torch.manual_seed(SEED)
np.random.seed(SEED)
if torch.cuda.is_available():
    torch.cuda.manual_seed_all(SEED)

В этот раз наша вспомогательная цель состоит в том, чтобы тщательно протоколировтаь время выполнения всех действий, промежуточные и итоговые результаты и давать качественную визуализацию. Поэтому при воспроизведении кода на ваших настройках могут быть затруднения.

Мониторинговый класс
# ===== КЛАСС МОНИТОРИНГА ВРЕМЕНИ ВЫПОЛНЕНИЯ =====
class TimeTracker:
    """
    Продвинутый трекер времени выполнения для каждой стадии
    """
    def __init__(self, colab_time_limit_hours: float = 12.0):
        self.colab_time_limit = colab_time_limit_hours * 3600  # Переводим в секунды
        self.session_start_time = time.time()
        self.stage_start_time = None
        self.stage_history = []
        self.current_stage = None

    def start_stage(self, stage_name: str, episodes_count: int):
        """Начало отслеживания стадии"""
        self.stage_start_time = time.time()
        self.current_stage = {
            'name': stage_name,
            'start_time': self.stage_start_time,
            'episodes_total': episodes_count,
            'episodes_completed': 0,
            'estimated_duration': None,
            'remaining_time': None
        }
        print(f"\n🎯 Начало стадии: {stage_name}")
        print(f"📅 Время начала: {datetime.now().strftime('%H:%M:%S')}")

    def update_progress(self, episodes_completed: int):
        """Обновление прогресса стадии"""
        if self.current_stage is None:
            return

        self.current_stage['episodes_completed'] = episodes_completed

        # Расчет оставшегося времени
        elapsed_time = time.time() - self.stage_start_time
        if episodes_completed > 0:
            time_per_episode = elapsed_time / episodes_completed
            remaining_episodes = self.current_stage['episodes_total'] - episodes_completed
            estimated_remaining = time_per_episode * remaining_episodes
            self.current_stage['estimated_duration'] = elapsed_time + estimated_remaining
            self.current_stage['remaining_time'] = estimated_remaining

    def get_time_info(self) -> Dict:
        """Получение информации о времени"""
        current_time = time.time()
        session_elapsed = current_time - self.session_start_time
        session_remaining = max(0, self.colab_time_limit - session_elapsed)

        info = {
            'session_elapsed': session_elapsed,
            'session_remaining': session_remaining,
            'session_progress': (session_elapsed / self.colab_time_limit) * 100,
            'colab_timeout_risk': session_remaining < 1800  # Риск если меньше 30 минут
        }

        if self.current_stage:
            stage_elapsed = current_time - self.stage_start_time
            info.update({
                'stage_name': self.current_stage['name'],
                'stage_elapsed': stage_elapsed,
                'stage_remaining': self.current_stage.get('remaining_time', 0),
                'episodes_completed': self.current_stage['episodes_completed'],
                'episodes_total': self.current_stage['episodes_total'],
                'stage_progress': (self.current_stage['episodes_completed'] /
                                 self.current_stage['episodes_total']) * 100
            })

        return info

    def finish_stage(self):
        """Завершение текущей стадии"""
        if self.current_stage:
            finish_time = time.time()
            duration = finish_time - self.stage_start_time
            self.current_stage['finish_time'] = finish_time
            self.current_stage['total_duration'] = duration
            self.stage_history.append(copy.deepcopy(self.current_stage))

            print(f"✅ Стадия '{self.current_stage['name']}' завершена")
            print(f"⏱️ Длительность: {self._format_time(duration)}")
            self.current_stage = None

    def display_status(self):
        """Отображение текущего статуса времени"""
        info = self.get_time_info()

        print("\n" + "="*70)
        print("⏰ СТАТУС ВРЕМЕНИ ВЫПОЛНЕНИЯ")
        print("="*70)

        # Информация о сессии Colab
        print(f"🖥️  Сессия Colab:")
        print(f"   Прошло времени: {self._format_time(info['session_elapsed'])}")
        print(f"   Осталось времени: {self._format_time(info['session_remaining'])}")
        print(f"   Прогресс сессии: {info['session_progress']:.1f}%")

        if info['colab_timeout_risk']:
            print("   ⚠️  ВНИМАНИЕ: Приближается лимит времени Colab!")

        # Информация о текущей стадии
        if 'stage_name' in info:
            print(f"\n🎯 Текущая стадия: {info['stage_name']}")
            print(f"   Прошло времени: {self._format_time(info['stage_elapsed'])}")
            print(f"   Осталось времени: {self._format_time(info['stage_remaining'])}")
            print(f"   Эпизоды: {info['episodes_completed']}/{info['episodes_total']}")
            print(f"   Прогресс стадии: {info['stage_progress']:.1f}%")

        print("="*70)

    def _format_time(self, seconds: float) -> str:
        """Форматирование времени в читаемый вид"""
        if seconds < 60:
            return f"{seconds:.1f}с"
        elif seconds < 3600:
            return f"{seconds/60:.1f}м"
        else:
            return f"{seconds/3600:.1f}ч {(seconds%3600)/60:.0f}м"
Визуализация и картинки
# ===== РАСШИРЕННАЯ СИСТЕМА ВИЗУАЛИЗАЦИИ =====
class EnhancedVisualization:
    """
    Улучшенная система визуализации с графиками и символами
    """
    def __init__(self):
        # Настройка стилей для красивых графиков
        plt.style.use('seaborn-v0_8-darkgrid')
        sns.set_palette("husl")

        # Эмодзи и символы для визуализации
        self.stage_symbols = {
            'stage1': '🥇',
            'stage2': '🥈',
            'stage3': '🥉'
        }

        self.metric_symbols = {
            'reward': '🎯',
            'fitness': '💪',
            'population': '👥',
            'economy': '💰',
            'resources': '🌿',
            'stability': '⚖️',
            'adaptation': '🔄',
            'entropy': '🌀',
            'efficiency': '⚡',
            'coordination': '🤝'
        }

    def create_comprehensive_dashboard(self, performance_monitor, stage_name: str):
        """Создание комплексной панели мониторинга"""
        print(f"\n📊 Создание панели мониторинга для {stage_name}...")

        # Создание фигуры с множественными подграфиками
        fig = plt.figure(figsize=(20, 16))
        gs = fig.add_gridspec(4, 4, hspace=0.3, wspace=0.3)

        # Заголовок с эмодзи
        stage_emoji = self.stage_symbols.get(stage_name.lower().replace(' ', ''), '🚀')
        fig.suptitle(f'{stage_emoji} Панель мониторинга: {stage_name}',
                     fontsize=20, fontweight='bold', y=0.95)

        metrics = performance_monitor.metrics

        # 1. Награды и системная производительность
        ax1 = fig.add_subplot(gs[0, :2])
        if metrics['episode_rewards']:
            episodes = range(len(metrics['episode_rewards']))
            ax1.plot(episodes, metrics['episode_rewards'], 'o-', linewidth=2,
                    markersize=4, alpha=0.8, label=f"{self.metric_symbols['reward']} Награда за эпизод")
            ax1.plot(episodes, np.cumsum(metrics['episode_rewards'])/np.arange(1, len(episodes)+1),
                    '--', linewidth=2, alpha=0.7, label='📈 Средняя накопленная')
            ax1.set_title(f"{self.metric_symbols['reward']} Динамика наград", fontweight='bold')
            ax1.set_xlabel('Эпизод')
            ax1.set_ylabel('Награда')
            ax1.legend()
            ax1.grid(True, alpha=0.3)

        # 2. Системная награда
        ax2 = fig.add_subplot(gs[0, 2:])
        if metrics['system_reward']:
            ax2.plot(metrics['system_reward'], 'o-', color='green', linewidth=2,
                    markersize=4, alpha=0.8)
            ax2.set_title(f"🎯 Системная награда", fontweight='bold')
            ax2.set_xlabel('Эпизод')
            ax2.set_ylabel('Общая награда')
            ax2.grid(True, alpha=0.3)

        # 3. Демографические метрики
        ax3 = fig.add_subplot(gs[1, :2])
        demo_metrics = ['population_balance', 'demographic_stability']
        colors = ['blue', 'orange']
        for i, metric in enumerate(demo_metrics):
            if metrics[metric]:
                symbol = self.metric_symbols.get(metric.split('_')[0], '📊')
                ax3.plot(metrics[metric], 'o-', color=colors[i], linewidth=2,
                        markersize=3, alpha=0.8, label=f"{symbol} {metric.replace('_', ' ').title()}")
        ax3.set_title(f"{self.metric_symbols['population']} Демографические показатели", fontweight='bold')
        ax3.set_xlabel('Эпизод')
        ax3.set_ylabel('Значение')
        ax3.legend()
        ax3.grid(True, alpha=0.3)

        # 4. Экономические показатели
        ax4 = fig.add_subplot(gs[1, 2:])
        econ_metrics = ['resource_utilization', 'economic_development']
        colors = ['green', 'purple']
        for i, metric in enumerate(econ_metrics):
            if metrics[metric]:
                symbol = self.metric_symbols.get(metric.split('_')[0], '📊')
                ax4.plot(metrics[metric], 'o-', color=colors[i], linewidth=2,
                        markersize=3, alpha=0.8, label=f"{symbol} {metric.replace('_', ' ').title()}")
        ax4.set_title(f"{self.metric_symbols['economy']} Экономические показатели", fontweight='bold')
        ax4.set_xlabel('Эпизод')
        ax4.set_ylabel('Значение')
        ax4.legend()
        ax4.grid(True, alpha=0.3)

        # 5. Эволюционные метрики
        ax5 = fig.add_subplot(gs[2, :2])
        evol_metrics = ['architecture_entropy', 'adaptation_speed']
        colors = ['red', 'cyan']
        for i, metric in enumerate(evol_metrics):
            if metrics[metric]:
                symbol = self.metric_symbols.get(metric.split('_')[0], '📊')
                ax5.plot(metrics[metric], 'o-', color=colors[i], linewidth=2,
                        markersize=3, alpha=0.8, label=f"{symbol} {metric.replace('_', ' ').title()}")
        ax5.set_title(f"{self.metric_symbols['entropy']} Эволюционные метрики", fontweight='bold')
        ax5.set_xlabel('Эпизод')
        ax5.set_ylabel('Значение')
        ax5.legend()
        ax5.grid(True, alpha=0.3)

        # 6. Эффективность и производительность
        ax6 = fig.add_subplot(gs[2, 2:])
        perf_metrics = ['energy_efficiency', 'computational_complexity']
        if metrics['energy_efficiency'] and metrics['computational_complexity']:
            # Нормализация для совместного отображения
            eff_norm = np.array(metrics['energy_efficiency']) / max(metrics['energy_efficiency'])
            comp_norm = np.array(metrics['computational_complexity']) / max(metrics['computational_complexity'])

            ax6.plot(eff_norm, 'o-', color='gold', linewidth=2, markersize=3,
                    alpha=0.8, label=f"{self.metric_symbols['efficiency']} Энергоэффективность (норм.)")
            ax6.plot(comp_norm, 'o-', color='brown', linewidth=2, markersize=3,
                    alpha=0.8, label='🔧 Сложность вычислений (норм.)')
            ax6.set_title(f"{self.metric_symbols['efficiency']} Производительность", fontweight='bold')
            ax6.set_xlabel('Эпизод')
            ax6.set_ylabel('Нормализованное значение')
            ax6.legend()
            ax6.grid(True, alpha=0.3)

        # 7. Тепловая карта корреляций метрик
        ax7 = fig.add_subplot(gs[3, :2])
        correlation_data = []
        metric_names = []
        for name, values in metrics.items():
            if values and len(values) > 5:  # Берем только метрики с достаточным количеством данных
                correlation_data.append(values[:min(len(values), 50)])  # Ограничиваем для производительности
                metric_names.append(name.replace('_', '\n'))

        if len(correlation_data) > 1:
            # Выравниваем длины массивов
            min_len = min(len(data) for data in correlation_data)
            correlation_matrix = np.corrcoef([data[:min_len] for data in correlation_data])

            sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0,
                       xticklabels=metric_names, yticklabels=metric_names, ax=ax7,
                       fmt='.2f', cbar_kws={'label': 'Корреляция'})
            ax7.set_title("🔥 Корреляционная матрица метрик", fontweight='bold')

        # 8. Координация и стабильность
        ax8 = fig.add_subplot(gs[3, 2:])
        coord_metric = 'policy_coordination'
        if metrics[coord_metric]:
            ax8.plot(metrics[coord_metric], 'o-', color='darkgreen', linewidth=2,
                    markersize=4, alpha=0.8)
            ax8.fill_between(range(len(metrics[coord_metric])), metrics[coord_metric],
                           alpha=0.3, color='lightgreen')
            ax8.set_title(f"{self.metric_symbols['coordination']} Координация политики", fontweight='bold')
            ax8.set_xlabel('Эпизод')
            ax8.set_ylabel('Уровень координации')
            ax8.grid(True, alpha=0.3)

        plt.tight_layout()
        return fig

    def create_evolution_analysis(self, evolution_logger, stage_name: str):
        """Создание анализа эволюционного процесса"""
        if not evolution_logger.evolution_history:
            return None

        print(f"\n🧬 Создание анализа эволюции для {stage_name}...")

        fig, axes = plt.subplots(2, 3, figsize=(18, 12))
        fig.suptitle(f'🧬 Эволюционный анализ: {stage_name}', fontsize=16, fontweight='bold')

        # Данные эволюции
        generations = [step['generation'] for step in evolution_logger.evolution_history]
        best_fitness = [step['best_fitness'] for step in evolution_logger.evolution_history]
        avg_fitness = [step['avg_fitness'] for step in evolution_logger.evolution_history]
        fitness_std = [step['fitness_std'] for step in evolution_logger.evolution_history]

        # 1. Динамика fitness
        axes[0, 0].plot(generations, best_fitness, 'o-', color='red', linewidth=2,
                       markersize=5, label='🏆 Лучший fitness')
        axes[0, 0].plot(generations, avg_fitness, 'o-', color='blue', linewidth=2,
                       markersize=5, label='📊 Средний fitness')
        axes[0, 0].fill_between(generations,
                               np.array(avg_fitness) - np.array(fitness_std),
                               np.array(avg_fitness) + np.array(fitness_std),
                               alpha=0.3, color='blue', label='📏 Стандартное отклонение')
        axes[0, 0].set_title('💪 Эволюция Fitness', fontweight='bold')
        axes[0, 0].set_xlabel('Поколение')
        axes[0, 0].set_ylabel('Fitness')
        axes[0, 0].legend()
        axes[0, 0].grid(True, alpha=0.3)

        # 2. Распределение типов мутаций
        axes[0, 1].axis('off')
        if evolution_logger.mutation_log:
            mutation_types = [log['mutation_type'] for log in evolution_logger.mutation_log]
            mutation_counts = {}
            for mut_type in mutation_types:
                mutation_counts[mut_type] = mutation_counts.get(mut_type, 0) + 1

            if mutation_counts:
                types = list(mutation_counts.keys())
                counts = list(mutation_counts.values())
                colors = plt.cm.Set3(np.linspace(0, 1, len(types)))

                axes[0, 1].pie(counts, labels=types, autopct='%1.1f%%', colors=colors,
                              startangle=90, textprops={'fontsize': 10})
                axes[0, 1].set_title('🔀 Распределение мутаций', fontweight='bold')

        # 3. Прогресс разнообразия популяции
        num_archs = [step['num_architectures'] for step in evolution_logger.evolution_history]
        if num_archs:
            axes[0, 2].bar(generations, num_archs, color='green', alpha=0.7)
            axes[0, 2].set_title('🌈 Размер популяции', fontweight='bold')
            axes[0, 2].set_xlabel('Поколение')
            axes[0, 2].set_ylabel('Количество архитектур')
            axes[0, 2].grid(True, alpha=0.3)

        # 4. Статистика скрещиваний
        axes[1, 0].axis('off')
        if evolution_logger.crossover_log:
            crossover_count = len(evolution_logger.crossover_log)
            mutation_count = len(evolution_logger.mutation_log)

            labels = ['🔀 Скрещивания', '🧬 Мутации']
            sizes = [crossover_count, mutation_count]
            colors = ['lightcoral', 'lightblue']

            axes[1, 0].pie(sizes, labels=labels, autopct='%1.1f%%', colors=colors,
                          startangle=90, textprops={'fontsize': 12})
            axes[1, 0].set_title('⚖️ Типы эволюционных операций', fontweight='bold')

        # 5. Временная динамика эволюции
        if len(generations) > 1:
            fitness_improvement = np.diff(best_fitness)
            axes[1, 1].plot(generations[1:], fitness_improvement, 'o-', color='purple',
                           linewidth=2, markersize=4)
            axes[1, 1].axhline(y=0, color='black', linestyle='--', alpha=0.5)
            axes[1, 1].set_title('📈 Улучшение fitness', fontweight='bold')
            axes[1, 1].set_xlabel('Поколение')
            axes[1, 1].set_ylabel('Изменение fitness')
            axes[1, 1].grid(True, alpha=0.3)

        # 6. Статистика эффективности эволюции
        if best_fitness and avg_fitness:
            efficiency = np.array(best_fitness) / (np.array(avg_fitness) + 1e-8)
            axes[1, 2].plot(generations, efficiency, 'o-', color='orange',
                           linewidth=2, markersize=4)
            axes[1, 2].set_title('⚡ Эффективность эволюции', fontweight='bold')
            axes[1, 2].set_xlabel('Поколение')
            axes[1, 2].set_ylabel('Лучший/Средний fitness')
            axes[1, 2].grid(True, alpha=0.3)

        plt.tight_layout()
        return fig
Ахтунг, много кода! Основной блок
# ===== ОРИГИНАЛЬНЫЕ КЛАССЫ С ОПТИМИЗАЦИЯМИ =====

class EvolutionLogger:
    """Класс для логирования эволюционного процесса"""
    def __init__(self):
        self.evolution_history = []
        self.architecture_history = []
        self.performance_history = []
        self.mutation_log = []
        self.crossover_log = []
        self.selection_log = []

    def log_evolution_step(self, generation: int, architectures: List,
                          fitness_scores: List, best_score: float):
        """Логирование шага эволюции"""
        step_data = {
            'generation': generation,
            'timestamp': datetime.now().isoformat(),
            'num_architectures': len(architectures),
            'fitness_scores': fitness_scores.copy(),
            'best_fitness': best_score,
            'avg_fitness': np.mean(fitness_scores),
            'fitness_std': np.std(fitness_scores)
        }
        self.evolution_history.append(step_data)

    def log_mutation(self, parent_arch: Dict, mutated_arch: Dict,
                    mutation_type: str):
        """Логирование мутации"""
        mutation_data = {
            'timestamp': datetime.now().isoformat(),
            'mutation_type': mutation_type,
            'parent_hash': hash(str(parent_arch)),
            'mutated_hash': hash(str(mutated_arch)),
            'changes': self._get_architecture_diff(parent_arch, mutated_arch)
        }
        self.mutation_log.append(mutation_data)

    def log_crossover(self, parent1_arch: Dict, parent2_arch: Dict,
                     child_arch: Dict):
        """Логирование скрещивания"""
        crossover_data = {
            'timestamp': datetime.now().isoformat(),
            'parent1_hash': hash(str(parent1_arch)),
            'parent2_hash': hash(str(parent2_arch)),
            'child_hash': hash(str(child_arch))
        }
        self.crossover_log.append(crossover_data)

    def _get_architecture_diff(self, arch1: Dict, arch2: Dict) -> List:
        """Получение различий между архитектурами"""
        differences = []
        for key in arch1:
            if arch1[key] != arch2[key]:
                differences.append({
                    'parameter': key,
                    'old_value': arch1[key],
                    'new_value': arch2[key]
                })
        return differences

class PerformanceMonitor:
    """Класс для мониторинга производительности системы с оптимизациями"""
    def __init__(self):
        self.metrics = {
            'episode_rewards': [],
            'system_reward': [],
            'adaptation_speed': [],
            'demographic_stability': [],
            'architecture_entropy': [],
            'computational_complexity': [],
            'energy_efficiency': [],
            'population_balance': [],
            'resource_utilization': [],
            'economic_development': [],
            'policy_coordination': []
        }
        self.start_time = time.time()

    def update_metrics(self, episode: int, agents: List, env_states: np.ndarray,
                      episode_rewards: np.ndarray, architectures: List):
        """Обновление всех метрик с оптимизацией для T4 GPU"""
        # Основные награды
        self.metrics['episode_rewards'].append(float(np.mean(episode_rewards)))
        self.metrics['system_reward'].append(float(np.sum(episode_rewards)))

        # Демографическая стабильность (оптимизированные вычисления)
        with torch.no_grad():  # Отключаем градиенты для экономии памяти[16]
            population_var = float(np.var(env_states[:, 0]))
            self.metrics['demographic_stability'].append(1.0 / (1.0 + population_var))

        # Архитектурная энтропия (разнообразие)
        arch_entropy = self._calculate_architecture_entropy(architectures)
        self.metrics['architecture_entropy'].append(arch_entropy)

        # Вычислительная сложность
        complexity = self._calculate_computational_complexity(agents)
        self.metrics['computational_complexity'].append(complexity)

        # Энергоэффективность (награда на параметр)
        efficiency = float(np.sum(episode_rewards)) / (complexity + 1e-8)
        self.metrics['energy_efficiency'].append(efficiency)

        # Специфичные демографические метрики
        self.metrics['population_balance'].append(float(np.mean(env_states[:, 0])))
        self.metrics['resource_utilization'].append(float(np.mean(env_states[:, 1])))
        self.metrics['economic_development'].append(float(np.mean(env_states[:, 2])))
        self.metrics['policy_coordination'].append(1.0 - float(np.std(env_states[:, 3])))

        # Скорость адаптации
        if len(self.metrics['episode_rewards']) > 10:
            recent_improvement = (np.mean(self.metrics['episode_rewards'][-5:]) -
                                np.mean(self.metrics['episode_rewards'][-10:-5]))
            self.metrics['adaptation_speed'].append(max(0, float(recent_improvement)))
        else:
            self.metrics['adaptation_speed'].append(0.0)

    def _calculate_architecture_entropy(self, architectures: List) -> float:
        """Вычисление энтропии архитектурного разнообразия"""
        if not architectures:
            return 0.0

        arch_hashes = [hash(str(arch)) for arch in architectures]
        unique_archs = len(set(arch_hashes))
        total_archs = len(arch_hashes)

        if total_archs <= 1:
            return 0.0

        # Энтропия Шеннона
        prob = unique_archs / total_archs
        return float(-prob * np.log2(prob + 1e-8))

    def _calculate_computational_complexity(self, agents: List) -> float:
        """Вычисление вычислительной сложности"""
        total_params = 0
        for agent in agents:
            if hasattr(agent, 'actor'):
                total_params += sum(p.numel() for p in agent.actor.parameters())
            if hasattr(agent, 'critic'):
                total_params += sum(p.numel() for p in agent.critic.parameters())
        return float(total_params)

class ArchitectureGenome:
    """Класс для представления генома архитектуры нейронной сети"""
    def __init__(self, hidden_sizes: List[int] = None,
                 activation_functions: List[str] = None,
                 dropout_rates: List[float] = None,
                 learning_rate: float = 0.001):
        self.hidden_sizes = hidden_sizes or [64, 32]
        self.activation_functions = activation_functions or ['relu', 'relu']
        self.dropout_rates = dropout_rates or [0.0, 0.0]
        self.learning_rate = learning_rate
        self.fitness = 0.0
        self.age = 0

    def to_dict(self) -> Dict:
        """Преобразование в словарь"""
        return {
            'hidden_sizes': self.hidden_sizes,
            'activation_functions': self.activation_functions,
            'dropout_rates': self.dropout_rates,
            'learning_rate': self.learning_rate,
            'fitness': self.fitness,
            'age': self.age
        }

    @classmethod
    def from_dict(cls, data: Dict):
        """Создание из словаря"""
        genome = cls(
            hidden_sizes=data['hidden_sizes'],
            activation_functions=data['activation_functions'],
            dropout_rates=data['dropout_rates'],
            learning_rate=data['learning_rate']
        )
        genome.fitness = data.get('fitness', 0.0)
        genome.age = data.get('age', 0)
        return genome

    def mutate(self, mutation_rate: float = 0.1) -> 'ArchitectureGenome':
        """Мутация генома"""
        new_genome = copy.deepcopy(self)

        # Мутация размеров скрытых слоев
        if random.random() < mutation_rate:
            layer_idx = random.randint(0, len(new_genome.hidden_sizes) - 1)
            change = random.choice([-16, -8, 8, 16])
            new_genome.hidden_sizes[layer_idx] = max(8,
                                                   new_genome.hidden_sizes[layer_idx] + change)

        # Мутация функций активации
        if random.random() < mutation_rate:
            layer_idx = random.randint(0, len(new_genome.activation_functions) - 1)
            new_genome.activation_functions[layer_idx] = random.choice(
                ['relu', 'tanh', 'sigmoid', 'leaky_relu', 'elu'])

        # Мутация dropout
        if random.random() < mutation_rate:
            layer_idx = random.randint(0, len(new_genome.dropout_rates) - 1)
            new_genome.dropout_rates[layer_idx] = random.uniform(0.0, 0.5)

        # Мутация learning rate
        if random.random() < mutation_rate:
            new_genome.learning_rate *= random.uniform(0.5, 2.0)
            new_genome.learning_rate = max(0.0001, min(0.01, new_genome.learning_rate))

        return new_genome

    def crossover(self, other: 'ArchitectureGenome') -> 'ArchitectureGenome':
        """Скрещивание с другим геномом"""
        new_genome = ArchitectureGenome()

        # Скрещивание размеров слоев
        min_layers = min(len(self.hidden_sizes), len(other.hidden_sizes))
        new_genome.hidden_sizes = []
        for i in range(min_layers):
            if random.random() < 0.5:
                new_genome.hidden_sizes.append(self.hidden_sizes[i])
            else:
                new_genome.hidden_sizes.append(other.hidden_sizes[i])

        # Скрещивание функций активации
        new_genome.activation_functions = []
        for i in range(min_layers):
            if random.random() < 0.5:
                new_genome.activation_functions.append(self.activation_functions[i])
            else:
                new_genome.activation_functions.append(other.activation_functions[i])

        # Скрещивание dropout rates
        new_genome.dropout_rates = []
        for i in range(min_layers):
            if random.random() < 0.5:
                new_genome.dropout_rates.append(self.dropout_rates[i])
            else:
                new_genome.dropout_rates.append(other.dropout_rates[i])

        # Скрещивание learning rate
        new_genome.learning_rate = random.choice([self.learning_rate, other.learning_rate])

        return new_genome

class EvolvableActor(nn.Module):
    """Эволюционируемый Actor с настраиваемой архитектурой и оптимизациями для T4"""
    def __init__(self, input_size: int = 4, genome: ArchitectureGenome = None):
        super().__init__()
        self.genome = genome or ArchitectureGenome()
        self.input_size = input_size

        layers = []
        prev_size = input_size

        for i, (hidden_size, activation, dropout) in enumerate(zip(
            self.genome.hidden_sizes,
            self.genome.activation_functions,
            self.genome.dropout_rates
        )):
            # Отключаем bias для слоев, за которыми следует BatchNorm (оптимизация)[30]
            layers.append(nn.Linear(prev_size, hidden_size, bias=(dropout == 0)))

            # Добавление функции активации
            if activation == 'relu':
                layers.append(nn.ReLU())
            elif activation == 'tanh':
                layers.append(nn.Tanh())
            elif activation == 'sigmoid':
                layers.append(nn.Sigmoid())
            elif activation == 'leaky_relu':
                layers.append(nn.LeakyReLU())
            elif activation == 'elu':
                layers.append(nn.ELU())

            # Добавление dropout
            if dropout > 0:
                layers.append(nn.Dropout(dropout))

            prev_size = hidden_size

        # Выходной слой
        layers.append(nn.Linear(prev_size, 1))
        layers.append(nn.Tanh())

        self.net = nn.Sequential(*layers)

        # Перемещение на устройство
        self.to(device)

    def forward(self, x):
        if isinstance(x, np.ndarray):
            x = torch.FloatTensor(x)
        x = x.to(device)
        return self.net(x)

class EvolvableCritic(nn.Module):
    """Эволюционируемый Critic с настраиваемой архитектурой и оптимизациями для T4"""
    def __init__(self, total_regions: int, genome: ArchitectureGenome = None):
        super().__init__()
        self.genome = genome or ArchitectureGenome()
        self.total_regions = total_regions
        input_size = 4 * total_regions + total_regions

        layers = []
        prev_size = input_size

        for i, (hidden_size, activation, dropout) in enumerate(zip(
            self.genome.hidden_sizes,
            self.genome.activation_functions,
            self.genome.dropout_rates
        )):
            # Отключаем bias для слоев, за которыми следует BatchNorm (оптимизация)[30]
            layers.append(nn.Linear(prev_size, hidden_size, bias=(dropout == 0)))

            # Добавление функции активации
            if activation == 'relu':
                layers.append(nn.ReLU())
            elif activation == 'tanh':
                layers.append(nn.Tanh())
            elif activation == 'sigmoid':
                layers.append(nn.Sigmoid())
            elif activation == 'leaky_relu':
                layers.append(nn.LeakyReLU())
            elif activation == 'elu':
                layers.append(nn.ELU())

            # Добавление dropout
            if dropout > 0:
                layers.append(nn.Dropout(dropout))

            prev_size = hidden_size

        # Выходной слой
        layers.append(nn.Linear(prev_size, 1))

        self.net = nn.Sequential(*layers)

        # Перемещение на устройство
        self.to(device)

    def forward(self, states, actions):
        if isinstance(states, np.ndarray):
            states = torch.FloatTensor(states)
        if isinstance(actions, np.ndarray):
            actions = torch.FloatTensor(actions)

        states = states.to(device)
        actions = actions.to(device)

        x = torch.cat([states.flatten(1), actions.flatten(1)], dim=1)
        return self.net(x)

class DarwinGodelAgent:
    """Агент с возможностью эволюции архитектуры и оптимизациями для T4"""
    def __init__(self, agent_id: int, total_regions: int,
                 actor_genome: ArchitectureGenome = None,
                 critic_genome: ArchitectureGenome = None,
                 is_base: bool = False):
        self.agent_id = agent_id
        self.total_regions = total_regions
        self.is_base = is_base

        # Создание геномов если не переданы
        self.actor_genome = actor_genome or ArchitectureGenome()
        self.critic_genome = critic_genome or ArchitectureGenome()

        # Создание сетей на основе геномов
        self.actor = EvolvableActor(genome=self.actor_genome)
        self.actor_target = EvolvableActor(genome=self.actor_genome)
        self.critic = EvolvableCritic(total_regions, genome=self.critic_genome)
        self.critic_target = EvolvableCritic(total_regions, genome=self.critic_genome)

        # Оптимизаторы с учетом learning rate из генома
        self.actor_optim = optim.Adam(self.actor.parameters(),
                                    lr=self.actor_genome.learning_rate)
        self.critic_optim = optim.Adam(self.critic.parameters(),
                                     lr=self.critic_genome.learning_rate)

        # Копирование весов в target сети
        self.actor_target.load_state_dict(self.actor.state_dict())
        self.critic_target.load_state_dict(self.critic.state_dict())

        self.steps_done = 0
        self.fitness_history = []

    def act(self, state, exploration=True):
        """Выбор действия агентом с оптимизацией для GPU"""
        with torch.no_grad():  # Отключение градиентов для экономии памяти[16]
            if isinstance(state, np.ndarray):
                state_tensor = torch.FloatTensor(state).to(device)
            else:
                state_tensor = state.to(device)

            action = self.actor(state_tensor).cpu().numpy()

            if exploration and not self.is_base:
                # Адаптивный шум на основе fitness
                noise_scale = 0.1 * max(0, 1 - self.steps_done / 10000)
                if self.fitness_history:
                    # Больше шума для агентов с низким fitness
                    avg_fitness = np.mean(self.fitness_history[-10:])
                    noise_scale *= (2.0 - min(1.0, max(0.0, avg_fitness)))
                noise = np.random.normal(0, noise_scale)
                action += noise
            return np.clip(action, -1, 1)

    def update_fitness(self, reward: float):
        """Обновление fitness агента"""
        self.fitness_history.append(float(reward))
        if len(self.fitness_history) > 100:
            self.fitness_history.pop(0)

        # Обновляем fitness в геномах
        recent_fitness = np.mean(self.fitness_history[-10:]) if self.fitness_history else 0
        self.actor_genome.fitness = recent_fitness
        self.critic_genome.fitness = recent_fitness

    def evolve_architecture(self, best_actor_genome: ArchitectureGenome = None,
                          best_critic_genome: ArchitectureGenome = None):
        """Эволюция архитектуры агента"""
        if self.is_base:
            return False  # Базовые агенты не эволюционируют

        evolved = False

        # Эволюция Actor
        if best_actor_genome and random.random() < CROSSOVER_RATE:
            new_actor_genome = self.actor_genome.crossover(best_actor_genome)
            evolved = True
        else:
            new_actor_genome = self.actor_genome.mutate(MUTATION_RATE)
            evolved = new_actor_genome.to_dict() != self.actor_genome.to_dict()

        # Эволюция Critic
        if best_critic_genome and random.random() < CROSSOVER_RATE:
            new_critic_genome = self.critic_genome.crossover(best_critic_genome)
            evolved = True
        else:
            new_critic_genome = self.critic_genome.mutate(MUTATION_RATE)
            evolved = evolved or (new_critic_genome.to_dict() != self.critic_genome.to_dict())

        if evolved:
            # Создаем новые сети
            self.actor_genome = new_actor_genome
            self.critic_genome = new_critic_genome

            new_actor = EvolvableActor(genome=self.actor_genome)
            new_critic = EvolvableCritic(self.total_regions, genome=self.critic_genome)

            # Пытаемся перенести веса (частично, если возможно)
            try:
                self._transfer_weights(self.actor, new_actor)
                self._transfer_weights(self.critic, new_critic)
            except:
                pass  # Если не удается перенести, начинаем с случайных весов

            self.actor = new_actor
            self.critic = new_critic

            # Обновляем target сети
            self.actor_target = EvolvableActor(genome=self.actor_genome)
            self.critic_target = EvolvableCritic(self.total_regions, genome=self.critic_genome)
            self.actor_target.load_state_dict(self.actor.state_dict())
            self.critic_target.load_state_dict(self.critic.state_dict())

            # Обновляем оптимизаторы
            self.actor_optim = optim.Adam(self.actor.parameters(),
                                        lr=self.actor_genome.learning_rate)
            self.critic_optim = optim.Adam(self.critic.parameters(),
                                         lr=self.critic_genome.learning_rate)

        return evolved

    def _transfer_weights(self, old_net, new_net):
        """Перенос весов между сетями разной архитектуры"""
        old_state = old_net.state_dict()
        new_state = new_net.state_dict()

        for name, param in new_state.items():
            if name in old_state:
                old_param = old_state[name]
                if old_param.shape == param.shape:
                    new_state[name] = old_param

        new_net.load_state_dict(new_state)

class MigrationEnvironment:
    """Среда для моделирования миграционных процессов"""
    def __init__(self, num_regions=NUM_REGIONS_STAGE1):
        self.num_regions = num_regions
        self.reset()

    def reset(self):
        """Сброс среды"""
        self.states = np.random.uniform(0.5, 1.5, (self.num_regions, 4))
        self.states[:, 3] = 0.0  # Политика миграции
        return self.states.copy()

    def step(self, actions):
        """Выполнение шага в среде"""
        next_states = np.zeros_like(self.states)
        rewards = np.zeros(self.num_regions)

        for i in range(self.num_regions):
            # Обновление политики миграции
            self.states[i, 3] = np.clip(self.states[i, 3] + actions[i][0], -1, 1)

            # Вычисление миграции
            neighbor_policies = [self.states[j, 3] for j in self.neighbors(i)]
            migration = 0.1 * (self.states[i, 3] - np.mean(neighbor_policies))

            # Обновление численности населения
            self.states[i, 0] = np.clip(self.states[i, 0] + migration, 0.1, 2.0)

            # Экономический рост
            economic_growth = 0.05 * self.states[i, 0] * (1 + self.states[i, 3])
            self.states[i, 2] = np.clip(self.states[i, 2] + economic_growth, 0.1, 2.0)

            # Использование ресурсов
            resource_usage = 0.02 * self.states[i, 0] * self.states[i, 2]
            self.states[i, 1] = np.clip(self.states[i, 1] - resource_usage, 0.1, 2.0)

            # Вычисление награды
            rewards[i] = self._calculate_reward(i)

        return self.states.copy(), rewards, False, {}

    def _calculate_reward(self, region):
        """Вычисление награды для региона"""
        pop_balance = -abs(self.states[region, 0] - 1.0)
        economy = self.states[region, 2] - 1.0
        resources = -0.5 * (1.0 - self.states[region, 1])

        neighbor_policies = [self.states[j, 3] for j in self.neighbors(region)]
        policy_align = 0.2 * np.mean([1 - abs(self.states[region, 3] - policy)
                                    for policy in neighbor_policies])

        return pop_balance + economy + resources + policy_align

    def neighbors(self, region):
        """Получение соседей региона"""
        return [(region - 1) % self.num_regions, (region + 1) % self.num_regions]

class DarwinGodelMADDPG:
    """Основной класс системы с интеграцией Darwin Gödel Machine и MADDPG"""
    def __init__(self, num_regions=NUM_REGIONS_STAGE1, prev_agents=None):
        self.num_regions = num_regions
        self.env = MigrationEnvironment(num_regions)
        self.evolution_logger = EvolutionLogger()
        self.performance_monitor = PerformanceMonitor()

        # Новые компоненты
        self.time_tracker = TimeTracker()
        self.visualizer = EnhancedVisualization()
        self.save_manager = AutoSaveManager()

        # Инициализация агентов
        if prev_agents:
            self.agents = prev_agents
            for agent in self.agents:
                agent.is_base = True
            self._add_new_agents(num_regions - len(prev_agents))
        else:
            self.agents = [DarwinGodelAgent(i, num_regions) for i in range(num_regions)]

        # Оптимизированная память с deque для лучшей производительности
        self.memory = deque(maxlen=100000)
        self.generation = 0
        self.best_architectures = {
            'actor': None,
            'critic': None
        }

    def _add_new_agents(self, num_new):
        """Добавление новых агентов"""
        for i in range(num_new):
            base_agent = self.agents[i % len(self.agents)]
            new_agent = DarwinGodelAgent(
                len(self.agents),
                self.num_regions,
                actor_genome=copy.deepcopy(base_agent.actor_genome),
                critic_genome=copy.deepcopy(base_agent.critic_genome)
            )
            self.agents.append(new_agent)

    def train_stage(self, episodes, stage_name):
        """Обучение на определенной стадии с расширенным мониторингом"""
        print(f"\n🚀 === {stage_name} ===")
        print(f"🤖 Количество агентов: {len(self.agents)}")
        print(f"📊 Количество эпизодов: {episodes}")

        # Запуск отслеживания времени
        self.time_tracker.start_stage(stage_name, episodes)

        # Прогресс-бар для эпизодов[33]
        episode_pbar = tqdm(range(episodes), desc=f"🎯 {stage_name}",
                           unit="эпизод", colour="blue")

        for episode in episode_pbar:
            states = self.env.reset()
            episode_rewards = np.zeros(self.num_regions)

            # Прогресс-бар для шагов
            step_pbar = tqdm(range(STEPS), desc=f"Эпизод {episode+1}",
                           leave=False, unit="шаг", colour="green")

            for step in step_pbar:
                # Получение действий от агентов
                actions = self._get_actions(states)

                # Выполнение шага в среде
                next_states, rewards, _, _ = self.env.step(actions)

                # Сохранение опыта
                self.memory.append((states, actions, rewards, next_states))

                # Обновление агентов
                if len(self.memory) > BATCH_SIZE:
                    self._update_agents()

                # Обновление fitness агентов
                for i, agent in enumerate(self.agents):
                    agent.update_fitness(rewards[i])
                    if not agent.is_base:
                        agent.steps_done += 1

                episode_rewards += rewards
                states = next_states

                # Обновление прогресс-бара шагов
                step_pbar.set_postfix({
                    'Награда': f"{np.mean(rewards):.3f}",
                    'Память': f"{len(self.memory)}"
                })

            # Эволюция архитектур
            if episode % EVOLUTION_FREQUENCY == 0 and episode > 0:
                print(f"\n🧬 Эволюция архитектур (поколение {self.generation})")
                self._evolve_population()

            # Обновление мониторинга
            architectures = [agent.actor_genome.to_dict() for agent in self.agents]
            self.performance_monitor.update_metrics(
                episode, self.agents, states, episode_rewards, architectures)

            # Обновление прогресса времени
            self.time_tracker.update_progress(episode + 1)

            # Обновление прогресс-бара эпизодов
            avg_reward = np.mean(episode_rewards)
            time_info = self.time_tracker.get_time_info()
            episode_pbar.set_postfix({
                'Ср.награда': f"{avg_reward:.3f}",
                'Систем.': f"{np.sum(episode_rewards):.1f}",
                'Время': f"{time_info.get('stage_progress', 0):.1f}%",
                'Поколение': self.generation
            })

            # Вывод подробного прогресса каждые 10 эпизодов
            if (episode + 1) % 10 == 0:
                self.time_tracker.display_status()

                # Проверка риска превышения лимита времени
                if time_info.get('colab_timeout_risk', False):
                    print("⚠️ ВНИМАНИЕ: Приближается лимит времени Colab! Сохраняю промежуточные результаты...")
                    self.save_manager.save_stage_results(
                        f"{stage_name}_intermediate_{episode+1}",
                        self, self.performance_monitor, self.evolution_logger,
                        self.time_tracker, self.visualizer
                    )

        # Завершение стадии
        self.time_tracker.finish_stage()

        # Сохранение результатов стадии
        print(f"\n💾 Сохранение результатов стадии: {stage_name}")
        self.save_manager.save_stage_results(
            stage_name, self, self.performance_monitor,
            self.evolution_logger, self.time_tracker, self.visualizer
        )

        print(f"✅ {stage_name} завершена!")

    def _get_actions(self, states):
        """Получение действий от всех агентов с оптимизацией для GPU"""
        actions = []

        # Батчевая обработка для ускорения на GPU[18]
        if torch.cuda.is_available() and len(self.agents) > 4:
            # Группируем состояния и обрабатываем батчами
            states_batch = torch.FloatTensor(states).to(device)

            with torch.no_grad():  # Отключение градиентов для экономии памяти
                for i, agent in enumerate(self.agents):
                    exploration = not agent.is_base
                    action = agent.act(states_batch[i], exploration=exploration)
                    actions.append(action)
        else:
            # Обычная обработка для CPU или малого количества агентов
            for i, agent in enumerate(self.agents):
                exploration = not agent.is_base
                action = agent.act(states[i], exploration=exploration)
                actions.append(action)

        return actions

    def _update_agents(self):
        """Обновление агентов методом MADDPG с оптимизациями для T4"""
        # Используем mini-batch для экономии памяти GPU[31]
        batch = random.sample(self.memory, min(BATCH_SIZE, len(self.memory)))

        # Преобразование в тензоры с оптимизацией памяти
        states = torch.FloatTensor(np.array([item[0] for item in batch])).to(device)
        actions = torch.FloatTensor(np.array([item[1] for item in batch])).to(device)
        rewards = torch.FloatTensor(np.array([item[2] for item in batch])).to(device)
        next_states = torch.FloatTensor(np.array([item[3] for item in batch])).to(device)

        for idx, agent in enumerate(self.agents):
            if agent.is_base:
                continue

            # Очистка кэша GPU для экономии памяти
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

            # Обновление Critic
            agent.critic_optim.zero_grad()

            with torch.no_grad():
                target_actions = []
                for i, a in enumerate(self.agents):
                    target_action = a.actor_target(next_states[:, i, :])
                    target_actions.append(target_action)

                target_q = rewards[:, idx] + GAMMA * agent.critic_target(
                    next_states.view(BATCH_SIZE, -1),
                    torch.cat(target_actions, dim=1)
                ).squeeze()

            current_q = agent.critic(
                states.view(BATCH_SIZE, -1),
                actions.view(BATCH_SIZE, -1)
            ).squeeze()

            critic_loss = nn.MSELoss()(current_q, target_q)
            critic_loss.backward()

            # Градиентное отсечение для стабильности[16]
            torch.nn.utils.clip_grad_norm_(agent.critic.parameters(), 1.0)
            agent.critic_optim.step()

            # Обновление Actor
            agent.actor_optim.zero_grad()

            policy_actions = []
            for i, a in enumerate(self.agents):
                if i == idx:
                    policy_actions.append(agent.actor(states[:, i, :]))
                else:
                    policy_actions.append(a.actor(states[:, i, :]).detach())

            actor_loss = -agent.critic(
                states.view(BATCH_SIZE, -1),
                torch.cat(policy_actions, dim=1)
            ).mean()

            actor_loss.backward()

            # Градиентное отсечение для стабильности
            torch.nn.utils.clip_grad_norm_(agent.actor.parameters(), 1.0)
            agent.actor_optim.step()

            # Обновление target сетей
            self._soft_update(agent.actor, agent.actor_target, TAU)
            self._soft_update(agent.critic, agent.critic_target, TAU)

    def _soft_update(self, source, target, tau):
        """Мягкое обновление target сети"""
        for target_param, source_param in zip(target.parameters(), source.parameters()):
            target_param.data.copy_(tau * source_param.data + (1.0 - tau) * target_param.data)

    def _evolve_population(self):
        """Эволюция популяции агентов с расширенным логированием"""
        print(f"\n🧬 --- Эволюция поколения {self.generation} ---")

        # Сбор fitness scores
        fitness_scores = []
        actor_genomes = []
        critic_genomes = []

        for agent in self.agents:
            if not agent.is_base:
                fitness = np.mean(agent.fitness_history[-10:]) if agent.fitness_history else 0
                fitness_scores.append(fitness)
                actor_genomes.append(agent.actor_genome)
                critic_genomes.append(agent.critic_genome)

        if not fitness_scores:
            return

        # Найти лучшие архитектуры
        best_idx = np.argmax(fitness_scores)
        best_actor_genome = actor_genomes[best_idx]
        best_critic_genome = critic_genomes[best_idx]

        # Обновить глобальные лучшие архитектуры
        if (self.best_architectures['actor'] is None or
            best_actor_genome.fitness > self.best_architectures['actor'].fitness):
            self.best_architectures['actor'] = copy.deepcopy(best_actor_genome)

        if (self.best_architectures['critic'] is None or
            best_critic_genome.fitness > self.best_architectures['critic'].fitness):
            self.best_architectures['critic'] = copy.deepcopy(best_critic_genome)

        # Логирование эволюции
        self.evolution_logger.log_evolution_step(
            self.generation,
            [g.to_dict() for g in actor_genomes],
            fitness_scores,
            np.max(fitness_scores)
        )

        # Эволюция агентов с прогресс-баром
        evolved_count = 0
        agent_pbar = tqdm(self.agents, desc="🔄 Эволюция агентов", leave=False)

        for agent in agent_pbar:
            if agent.is_base:
                continue

            old_actor_genome = copy.deepcopy(agent.actor_genome)
            old_critic_genome = copy.deepcopy(agent.critic_genome)

            evolved = agent.evolve_architecture(
                self.best_architectures['actor'],
                self.best_architectures['critic']
            )

            if evolved:
                evolved_count += 1
                # Логирование мутаций/скрещиваний
                if random.random() < 0.5:  # Предполагаем что была мутация
                    self.evolution_logger.log_mutation(
                        old_actor_genome.to_dict(),
                        agent.actor_genome.to_dict(),
                        "actor_mutation"
                    )
                else:  # Предполагаем скрещивание
                    self.evolution_logger.log_crossover(
                        old_actor_genome.to_dict(),
                        self.best_architectures['actor'].to_dict(),
                        agent.actor_genome.to_dict()
                    )

            agent_pbar.set_postfix({'Эволюционировало': evolved_count})

        print(f"✨ Эволюционировало агентов: {evolved_count}")
        print(f"🏆 Лучший fitness: {np.max(fitness_scores):.3f}")
        print(f"📊 Средний fitness: {np.mean(fitness_scores):.3f}")
        print(f"📏 Стандартное отклонение: {np.std(fitness_scores):.3f}")

        self.generation += 1

    def train_all_stages(self):
        """Обучение всех стадий с комплексным мониторингом"""
        print("\n🚀 ========== ЗАПУСК ПОЛНОГО ОБУЧЕНИЯ ==========")
        print("🎯 Darwin Gödel MADDPG - Система управления демографическими процессами")
        print("⚡ Оптимизировано для Google Colab T4 GPU")
        print("="*60)

        try:
            # Стадия 1: 7 агентов
            print(f"\n🥇 СТАДИЯ 1: Базовое обучение ({NUM_REGIONS_STAGE1} регионов)")
            self.train_stage(EPISODES_PER_STAGE, "Стадия 1")

            # Расширение до 28 агентов
            print(f"\n🥈 ПЕРЕХОД К СТАДИИ 2: Расширение до {NUM_REGIONS_STAGE2} регионов")
            stage1_agents = copy.deepcopy(self.agents)
            self.__init__(NUM_REGIONS_STAGE2, stage1_agents)
            self.train_stage(EPISODES_PER_STAGE, "Стадия 2")

            # Расширение до 89 агентов
            print(f"\n🥉 ПЕРЕХОД К СТАДИИ 3: Расширение до {NUM_REGIONS_STAGE3} регионов")
            stage2_agents = copy.deepcopy(self.agents)
            self.__init__(NUM_REGIONS_STAGE3, stage2_agents)
            self.train_stage(EPISODES_PER_STAGE, "Стадия 3")

            # Создание финального отчета
            self._create_final_report()

            print("\n🎉 ========== ОБУЧЕНИЕ УСПЕШНО ЗАВЕРШЕНО! ==========")

        except Exception as e:
            print(f"\n❌ Ошибка при обучении: {e}")
            print("💾 Сохраняю промежуточные результаты...")
            self.save_manager.save_stage_results(
                "emergency_save", self, self.performance_monitor,
                self.evolution_logger, self.time_tracker, self.visualizer
            )
            raise

    def _create_final_report(self):
        """Создание финального отчета о всем процессе обучения"""
        print("\n📋 Создание финального отчета...")

        final_report_path = os.path.join(self.save_manager.session_dir, 'FINAL_REPORT.txt')

        with open(final_report_path, 'w', encoding='utf-8') as f:
            f.write("🚀 ФИНАЛЬНЫЙ ОТЧЕТ СИСТЕМЫ DARWIN GÖDEL MADDPG\n")
            f.write("="*80 + "\n\n")

            # Общая информация о сессии
            session_time = time.time() - self.time_tracker.session_start_time
            f.write(f"📅 Дата завершения: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
            f.write(f"⏱️ Общее время сессии: {self.time_tracker._format_time(session_time)}\n")
            f.write(f"🎯 Количество завершенных стадий: {len(self.time_tracker.stage_history)}\n")
            f.write(f"🧬 Финальное поколение эволюции: {self.generation}\n")
            f.write(f"🤖 Финальное количество агентов: {len(self.agents)}\n\n")

            # Статистика по стадиям
            f.write("📊 СТАТИСТИКА ПО СТАДИЯМ:\n")
            f.write("-"*50 + "\n")
            for stage in self.time_tracker.stage_history:
                f.write(f"\n🎯 {stage['name']}:\n")
                f.write(f"   ⏱️ Длительность: {self.time_tracker._format_time(stage['total_duration'])}\n")
                f.write(f"   📈 Эпизодов: {stage['episodes_total']}\n")
                f.write(f"   ⚡ Скорость: {stage['total_duration']/stage['episodes_total']:.1f}с/эпизод\n")

            # Лучшие достижения
            f.write(f"\n🏆 ЛУЧШИЕ ДОСТИЖЕНИЯ:\n")
            f.write("-"*50 + "\n")
            if self.performance_monitor.metrics['episode_rewards']:
                best_reward = max(self.performance_monitor.metrics['episode_rewards'])
                avg_reward = np.mean(self.performance_monitor.metrics['episode_rewards'])
                f.write(f"🎯 Максимальная награда за эпизод: {best_reward:.3f}\n")
                f.write(f"📊 Средняя награда: {avg_reward:.3f}\n")

            if self.evolution_logger.evolution_history:
                best_fitness = max([step['best_fitness'] for step in self.evolution_logger.evolution_history])
                f.write(f"💪 Максимальный fitness: {best_fitness:.3f}\n")
                f.write(f"🔀 Общее количество мутаций: {len(self.evolution_logger.mutation_log)}\n")
                f.write(f"🤝 Общее количество скрещиваний: {len(self.evolution_logger.crossover_log)}\n")

            # Эффективность использования ресурсов
            f.write(f"\n⚡ ЭФФЕКТИВНОСТЬ РЕСУРСОВ:\n")
            f.write("-"*50 + "\n")
            f.write(f"🖥️ Устройство: {'GPU (CUDA)' if torch.cuda.is_available() else 'CPU'}\n")
            if torch.cuda.is_available():
                f.write(f"🔧 GPU: {torch.cuda.get_device_name(0)}\n")
                f.write(f"💾 Использование GPU памяти: оптимизировано для T4\n")

            total_episodes = sum(stage['episodes_total'] for stage in self.time_tracker.stage_history)
            if total_episodes > 0:
                episodes_per_hour = total_episodes / (session_time / 3600)
                f.write(f"📈 Скорость обучения: {episodes_per_hour:.1f} эпизодов/час\n")

            f.write(f"\n🎉 ОБУЧЕНИЕ УСПЕШНО ЗАВЕРШЕНО!\n")
            f.write("Все результаты сохранены в соответствующих папках стадий.\n")

        print(f"📋 Финальный отчет сохранен: {final_report_path}")

В качеств основной метрики оценки мы будем использовать категорию fitness . Фитнес-функция используется в контексте генетических алгоритмов, в том числе в DGM. Фитнес-функция вычисляет «близость» особи к тому, чтобы быть решением рассматриваемой задачи. Чем лучше значение фитнес-функции, тем больше шансов у особи на выживание и размножение.

Обычный генетический алгоритм состоит из трех этапов. В нашем случае сначала мы создаем популяцию агентов, потом подсчитываем функцию их приспособленности (нашу любимую фитнесс-функцию) - мы будем смотреть как среднее значение функции, так и лучшие значения.

Первый этап обучения для 7 агентов занял немногим более 9 минут. Средняя награда составила награда=78.587, Системная (общая) =550.1. И мы получили 8 поколений акторов. Хотя в целом ход обучения повторял результаты первого этапа прошлого эксперимента касаемо динамики наград.

Динамика наград и показатели демографического баланса и устойчивости
Динамика наград и показатели демографического баланса и устойчивости

Отметим так же тот факт, что показатели координации политики 7 агентов практически сразу же вышли на максимальный уровень (7 искусственным интеллектам проще договориться друг с другом - см. график «координация политики», за исключением стартовых эпизодов в начале обучения и примерно 9 эпизода, с небольшим провалом, очевидно по причине воздействия случайного, шумового фактора.

График координации политик ИИ-аuентов
График координации политик ИИ-аuентов

Отметим в ходе эксперимента так же достаточно большую разницу между значениями средней и лучшей фитнесс-функции и неравномерные от поколения к поколению показатели эффективности эволюции. Повторимся, все результаты и графики эксперимента с DGM доступны в отдельном репозитории.

Динамика наград и демографическая устойчивость на второй стадии
Динамика наград и демографическая устойчивость на второй стадии

Вторая стадия DGM-эксперимента длилась существенно большее (на порядок) время - почти час. График обучения показывал схожую динамику, хотя численность населения немного подросла, упала средняя награда (35,7), системная приблизилась к 1000. И очень любопытной показала себя динамика графика координации политики.

График координации политик ИИ-агентов на второй стадии
График координации политик ИИ-агентов на второй стадии

Примерно с 11 до 30 эпохи агенты действовали согласованно, а вот после началась некоторая нестабильность. Впрочем, мы надеемся, что там, в компьютерном мире, все обошлось обычными политическими кризисами, без войн и революций. Впрочем вывод интересный: большее число одноуровневых агентов может проводить какое-то время гибкую скоординированную политику, но это «не вечно и не навсегда». Что было конкретной причиной расинхронизации (где-то случилась пандемия или пришел к власти усатый-полосатый и хвостатый диктатор, объявивший политику других агентов «неправильной») - мы пока не знаем.

Динамика наград и демографическая устойчивость на третьей стадии
Динамика наград и демографическая устойчивость на третьей стадии

Третья стадия, длительностью уже более шести с половиной часов, оказалась самой интересной. Во первых, средняя награда стала еще ниже, как и общесистемная, средняя фитнесс-функция стала фактически отрицательной (при том что лучше показатели у отдельных агентов даже стали выше). Показатель популяционного баланса стал ухудшаться. Так же индекс демографической стабильности был хуже, чем на двух предыдущих стадиях. Улучшение фитнесс-функции не произошло, в целом эффективность эволюции была отрицательной.

График координации политик ИИ-агентов на 3 стадии
График координации политик ИИ-агентов на 3 стадии

Уровень координации деятельности ИИ-агентов хоть и постепенно нарастал, но не достиг значений из предыдущих стадий. Вероятнее всего, выделенного количества эпох недостаточно для обучения системы из 89 действующих агентов. Второе предположение - с увеличением количества действующих субъектов или «перепроизводства» политических акторов у нас случилась настоящая феодальная раздробленность, в ходе которой отдельные ИИ-агенты показали высокую адаптивность и эффективность в своем развитии, и если бы речь шла о реальной ситуации, со временем они стали бы ядрами сети и нарождающейся новой политической системы, предлагая свои правила и ценности всем остальным.

ВЫВОДЫ

Логично предположить, что в нашем «урезанном» виде DGM не справится с задачей балансировки политики ИИ-агентов и ему на третьей стадии потребуется гораздо большее количество эпох для «приведения в соответствие» политики всех регионов.

Это справедливо и для реальной ситуации - в начале 00-ых годов в России структура политического управления породила новый политический институт федеральных округов. И сделала это вовсе не из прихоти, а в целях координации взаимодействия на макроуровне и опять же «приведения в соответствие» регионального законодательства федеральному. Наладить взаимодействие между ограниченным набором политических акторов - проще и быстрее.

Кстати, один из перспективных путей улучшения MADDPG - это введение иерархии агентов, каждый из которых управляет подуровнем из нескольких подчиненных, используя не весь объем информации и сокращая тем самым «проклятие размеренности».

Другой вариант совершенствования уже DGM - это введение процедур мутации, эволюции не только актора, но и критика и механизмов взаимодействия между агентами, трансляции, сохранения и применения накопленного опыта. Здесь можно поэкспериментировать не только с PER, но и воспроизведением ретроспективного опыта (PER), распределённым повтором опыта, опытом воспроизведения с приоритетной выборкой (гибридом PER и PER), воспроизведением опыта на основе разнообразия (DBER) и другими подходами.

Третий вариант, который и является «полноценным» DGM связан с созданием определённого внешнего по отношению к участникам эксперимента цикла и взаимодействия нескольких современных элементов ИИ. Во-первых, это оценивающий контур - дообученная на демографических материалах и моделях языковая модель, оценивающая результаты эксперимента. Во-вторых, контур генерации промптов на основе полученных оценок. В-третьих - кодировщик, языковая модель, пишущая код по промптам. В четвертых, сама модельная среда под MADDPG. Оценивающий контур, контур генерации промптов, модель-кодировщик и модель среды могут дорабатываться и совершенствоваться: языковая модель тюнится под итогам новых результатов экспериментов, модель генерации промптов и модель кодинга так же совершенствуются с учетом полученных результатов. Ну а про саму среду с MADDPG - мы отметим, что могут изменяться все ее гиперпараметры, включая количество и иерархию агентов, так и механизмы трансляции и воспроизведения полученного ими системного опыта. И вполне реально получить не просто улучшенный MADDPG, но и более эффективную дочернюю версию алгоритма.

Интересно, понравится ли ИИ песня группы «Тату» «Нас не догонят»?
Интересно, понравится ли ИИ песня группы «Тату» «Нас не догонят»?

Вот такой алгоритм уже будет полноценным «переходным» ИИ, способным вылезти из детской коляски и обставить на повороте своих создателей!

Автор выражает благодарность преподавателям курса Reinforcement Learning от OTUS за возможность существенно «подапгрейдить» свои компетенции в вопросах совершенствования процедур государственного политического управления в сфере миграции демографии с помощью элементов ML и Deep RL.

Источник

  • 09.10.25 08:23 pHqghUme

    (select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

  • 09.10.25 08:24 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:24 pHqghUme

    e

  • 09.10.25 08:24 pHqghUme

    can I ask you a question please?-1 waitfor delay '0:0:15' --

  • 09.10.25 08:25 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:25 pHqghUme

    e

  • 09.10.25 08:25 pHqghUme

    e

  • 09.10.25 08:25 pHqghUme

    e

  • 09.10.25 08:25 pHqghUme

    can I ask you a question please?9IDOn7ik'; waitfor delay '0:0:15' --

  • 09.10.25 08:26 pHqghUme

    can I ask you a question please?MQOVJH7P' OR 921=(SELECT 921 FROM PG_SLEEP(15))--

  • 09.10.25 08:26 pHqghUme

    e

  • 09.10.25 08:27 pHqghUme

    can I ask you a question please?64e1xqge') OR 107=(SELECT 107 FROM PG_SLEEP(15))--

  • 09.10.25 08:27 pHqghUme

    can I ask you a question please?ODDe7Ze5')) OR 82=(SELECT 82 FROM PG_SLEEP(15))--

  • 09.10.25 08:28 pHqghUme

    can I ask you a question please?'||DBMS_PIPE.RECEIVE_MESSAGE(CHR(98)||CHR(98)||CHR(98),15)||'

  • 09.10.25 08:28 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:28 pHqghUme

    can I ask you a question please?'"

  • 09.10.25 08:28 pHqghUme

    @@olQP6

  • 09.10.25 08:28 pHqghUme

    (select 198766*667891)

  • 09.10.25 08:28 pHqghUme

    (select 198766*667891 from DUAL)

  • 09.10.25 08:30 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:33 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:34 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:34 pHqghUme

    if(now()=sysdate(),sleep(15),0)

  • 09.10.25 08:35 pHqghUme

    e

  • 09.10.25 08:36 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:36 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:37 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:37 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:37 pHqghUme

    e

  • 09.10.25 08:37 pHqghUme

    e

  • 09.10.25 08:40 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:40 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:41 pHqghUme

    e

  • 09.10.25 08:41 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:42 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:42 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:42 pHqghUme

    e

  • 09.10.25 11:05 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 09.10.25 11:05 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 09.10.25 11:05 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 09.10.25 11:05 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 11.10.25 04:41 luciajessy3

    Don’t be deceived by different testimonies online that is most likely wrong. I have made use of several recovery options that got me disappointed at the end of the day but I must confess that the tech genius I eventually found is the best out here. It’s better you devise your time to find the valid professional that can help you recover your stolen or lost crypto such as bitcoins rather than falling victim of other amateur hackers that cannot get the job done. ADAMWILSON . TRADING @ CONSULTANT COM / WHATSAPP ; +1 (603) 702 ( 4335 ) is the most reliable and authentic blockchain tech expert you can work with to recover what you lost to scammers. They helped me get back on my feet and I’m very grateful for that. Contact their email today to recover your lost coins ASAP…

  • 11.10.25 10:44 Tonerdomark

    A thief took my Dogecoin and wrecked my life. Then Mr. Sylvester stepped in and changed everything. He got back €211,000 for me, every single cent of my gains. His calm confidence and strong tech skills rebuilt my trust. Thanks to him, I recovered my cash with no issues. After months of stress, I felt huge relief. I had full faith in him. If a scam stole your money, reach out to him today at { yt7cracker@gmail . com } His help sparked my full turnaround.

  • 12.10.25 01:12 harristhomas7376

    "In the crypto world, this is great news I want to share. Last year, I fell victim to a scam disguised as a safe investment option. I have invested in crypto trading platforms for about 10yrs thinking I was ensuring myself a retirement income, only to find that all my assets were either frozen, I believed my assets were secure — until I discovered that my BTC funds had been frozen and withdrawals were impossible. It was a devastating moment when I realized I had been scammed, and I thought my Bitcoin was gone forever, Everything changed when a close friend recommended the Capital Crypto Recover Service. Their professionalism, expertise, and dedication enabled me to recover my lost Bitcoin funds back — more than €560.000 DEM to my BTC wallet. What once felt impossible became a reality thanks to their support. If you have lost Bitcoin through scams, hacking, failed withdrawals, or similar challenges, don’t lose hope. I strongly recommend Capital Crypto Recover Service to anyone seeking a reliable and effective solution for recovering any wallet assets. They have a proven track record of successful reputation in recovering lost password assets for their clients and can help you navigate the process of recovering your funds. Don’t let scammers get away with your hard-earned money – contact Email: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Contact: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 12.10.25 01:12 harristhomas7376

    "In the crypto world, this is great news I want to share. Last year, I fell victim to a scam disguised as a safe investment option. I have invested in crypto trading platforms for about 10yrs thinking I was ensuring myself a retirement income, only to find that all my assets were either frozen, I believed my assets were secure — until I discovered that my BTC funds had been frozen and withdrawals were impossible. It was a devastating moment when I realized I had been scammed, and I thought my Bitcoin was gone forever, Everything changed when a close friend recommended the Capital Crypto Recover Service. Their professionalism, expertise, and dedication enabled me to recover my lost Bitcoin funds back — more than €560.000 DEM to my BTC wallet. What once felt impossible became a reality thanks to their support. If you have lost Bitcoin through scams, hacking, failed withdrawals, or similar challenges, don’t lose hope. I strongly recommend Capital Crypto Recover Service to anyone seeking a reliable and effective solution for recovering any wallet assets. They have a proven track record of successful reputation in recovering lost password assets for their clients and can help you navigate the process of recovering your funds. Don’t let scammers get away with your hard-earned money – contact Email: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Contact: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 12.10.25 19:53 Tonerdomark

    A crook swiped my Dogecoin. It ruined my whole world. Then Mr. Sylvester showed up. He fixed it all. He pulled back €211,000 for me. Not one cent missing from my profits. His steady cool and sharp tech know-how won back my trust. I got my money smooth and sound. After endless worry, relief hit me hard. I trusted him completely. Lost cash to a scam? Hit him up now at { yt7cracker@gmail . com }. His aid turned my life around. WhatsApp at +1 512 577 7957.

  • 12.10.25 21:36 blessing

    Writing this review is a joy. Marie has provided excellent service ever since I started working with her in early 2018. I was worried I wouldn't be able to get my coins back after they were stolen by hackers. I had no idea where to begin, therefore it was a nightmare for me. However, things became easier for me after my friend sent me to [email protected] and +1 7127594675 on WhatsApp. I'm happy that she was able to retrieve my bitcoin so that I could resume trading.

  • 13.10.25 01:11 elizabethrush89

    God bless Capital Crypto Recover Services for the marvelous work you did in my life, I have learned the hard way that even the most sensible investors can fall victim to scams. When my USD was stolen, for anyone who has fallen victim to one of the bitcoin binary investment scams that are currently ongoing, I felt betrayal and upset. But then I was reading a post on site when I saw a testimony of Wendy Taylor online who recommended that Capital Crypto Recovery has helped her recover scammed funds within 24 hours. after reaching out to this cyber security firm that was able to help me recover my stolen digital assets and bitcoin. I’m genuinely blown away by their amazing service and professionalism. I never imagined I’d be able to get my money back until I complained to Capital Crypto Recovery Services about my difficulties and gave all of the necessary paperwork. I was astounded that it took them 12 hours to reclaim my stolen money back. Without a doubt, my USDT assets were successfully recovered from the scam platform, Thank you so much Sir, I strongly recommend Capital Crypto Recover for any of your bitcoin recovery, digital funds recovery, hacking, and cybersecurity concerns. You reach them Call/Text Number +1 (336)390-6684 His Email: [email protected] Contact Telegram: @Capitalcryptorecover Via Contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 13.10.25 01:11 elizabethrush89

    God bless Capital Crypto Recover Services for the marvelous work you did in my life, I have learned the hard way that even the most sensible investors can fall victim to scams. When my USD was stolen, for anyone who has fallen victim to one of the bitcoin binary investment scams that are currently ongoing, I felt betrayal and upset. But then I was reading a post on site when I saw a testimony of Wendy Taylor online who recommended that Capital Crypto Recovery has helped her recover scammed funds within 24 hours. after reaching out to this cyber security firm that was able to help me recover my stolen digital assets and bitcoin. I’m genuinely blown away by their amazing service and professionalism. I never imagined I’d be able to get my money back until I complained to Capital Crypto Recovery Services about my difficulties and gave all of the necessary paperwork. I was astounded that it took them 12 hours to reclaim my stolen money back. Without a doubt, my USDT assets were successfully recovered from the scam platform, Thank you so much Sir, I strongly recommend Capital Crypto Recover for any of your bitcoin recovery, digital funds recovery, hacking, and cybersecurity concerns. You reach them Call/Text Number +1 (336)390-6684 His Email: [email protected] Contact Telegram: @Capitalcryptorecover Via Contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 14.10.25 01:15 tyleradams

    Hi. Please be wise, do not make the same mistake I had made in the past, I was a victim of bitcoin scam, I saw a glamorous review showering praises and marketing an investment firm, I reached out to them on what their contracts are, and I invested $28,000, which I was promised to get my first 15% profit in weeks, when it’s time to get my profits, I got to know the company was bogus, they kept asking me to invest more and I ran out of patience then requested to have my money back, they refused to answer nor refund my funds, not until a friend of mine introduced me to the NVIDIA TECH HACKERS, so I reached out and after tabling my complaints, they were swift to action and within 36 hours I got back my funds with the due profit. I couldn’t contain the joy in me. I urge you guys to reach out to NVIDIA TECH HACKERS on their email: [email protected]

  • 14.10.25 08:46 robertalfred175

    CRYPTO SCAM RECOVERY SUCCESSFUL – A TESTIMONIAL OF LOST PASSWORD TO YOUR DIGITAL WALLET BACK. My name is Robert Alfred, Am from Australia. I’m sharing my experience in the hope that it helps others who have been victims of crypto scams. A few months ago, I fell victim to a fraudulent crypto investment scheme linked to a broker company. I had invested heavily during a time when Bitcoin prices were rising, thinking it was a good opportunity. Unfortunately, I was scammed out of $120,000 AUD and the broker denied me access to my digital wallet and assets. It was a devastating experience that caused many sleepless nights. Crypto scams are increasingly common and often involve fake trading platforms, phishing attacks, and misleading investment opportunities. In my desperation, a friend from the crypto community recommended Capital Crypto Recovery Service, known for helping victims recover lost or stolen funds. After doing some research and reading multiple positive reviews, I reached out to Capital Crypto Recovery. I provided all the necessary information—wallet addresses, transaction history, and communication logs. Their expert team responded immediately and began investigating. Using advanced blockchain tracking techniques, they were able to trace the stolen Dogecoin, identify the scammer’s wallet, and coordinate with relevant authorities to freeze the funds before they could be moved. Incredibly, within 24 hours, Capital Crypto Recovery successfully recovered the majority of my stolen crypto assets. I was beyond relieved and truly grateful. Their professionalism, transparency, and constant communication throughout the process gave me hope during a very difficult time. If you’ve been a victim of a crypto scam, I highly recommend them with full confidence contacting: 📧 Email: [email protected] 📱 Telegram: @Capitalcryptorecover Contact: [email protected] 📞 Call/Text: +1 (336) 390-6684 🌐 Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 14.10.25 08:46 robertalfred175

    CRYPTO SCAM RECOVERY SUCCESSFUL – A TESTIMONIAL OF LOST PASSWORD TO YOUR DIGITAL WALLET BACK. My name is Robert Alfred, Am from Australia. I’m sharing my experience in the hope that it helps others who have been victims of crypto scams. A few months ago, I fell victim to a fraudulent crypto investment scheme linked to a broker company. I had invested heavily during a time when Bitcoin prices were rising, thinking it was a good opportunity. Unfortunately, I was scammed out of $120,000 AUD and the broker denied me access to my digital wallet and assets. It was a devastating experience that caused many sleepless nights. Crypto scams are increasingly common and often involve fake trading platforms, phishing attacks, and misleading investment opportunities. In my desperation, a friend from the crypto community recommended Capital Crypto Recovery Service, known for helping victims recover lost or stolen funds. After doing some research and reading multiple positive reviews, I reached out to Capital Crypto Recovery. I provided all the necessary information—wallet addresses, transaction history, and communication logs. Their expert team responded immediately and began investigating. Using advanced blockchain tracking techniques, they were able to trace the stolen Dogecoin, identify the scammer’s wallet, and coordinate with relevant authorities to freeze the funds before they could be moved. Incredibly, within 24 hours, Capital Crypto Recovery successfully recovered the majority of my stolen crypto assets. I was beyond relieved and truly grateful. Their professionalism, transparency, and constant communication throughout the process gave me hope during a very difficult time. If you’ve been a victim of a crypto scam, I highly recommend them with full confidence contacting: 📧 Email: [email protected] 📱 Telegram: @Capitalcryptorecover Contact: [email protected] 📞 Call/Text: +1 (336) 390-6684 🌐 Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 14.10.25 08:46 robertalfred175

    CRYPTO SCAM RECOVERY SUCCESSFUL – A TESTIMONIAL OF LOST PASSWORD TO YOUR DIGITAL WALLET BACK. My name is Robert Alfred, Am from Australia. I’m sharing my experience in the hope that it helps others who have been victims of crypto scams. A few months ago, I fell victim to a fraudulent crypto investment scheme linked to a broker company. I had invested heavily during a time when Bitcoin prices were rising, thinking it was a good opportunity. Unfortunately, I was scammed out of $120,000 AUD and the broker denied me access to my digital wallet and assets. It was a devastating experience that caused many sleepless nights. Crypto scams are increasingly common and often involve fake trading platforms, phishing attacks, and misleading investment opportunities. In my desperation, a friend from the crypto community recommended Capital Crypto Recovery Service, known for helping victims recover lost or stolen funds. After doing some research and reading multiple positive reviews, I reached out to Capital Crypto Recovery. I provided all the necessary information—wallet addresses, transaction history, and communication logs. Their expert team responded immediately and began investigating. Using advanced blockchain tracking techniques, they were able to trace the stolen Dogecoin, identify the scammer’s wallet, and coordinate with relevant authorities to freeze the funds before they could be moved. Incredibly, within 24 hours, Capital Crypto Recovery successfully recovered the majority of my stolen crypto assets. I was beyond relieved and truly grateful. Their professionalism, transparency, and constant communication throughout the process gave me hope during a very difficult time. If you’ve been a victim of a crypto scam, I highly recommend them with full confidence contacting: 📧 Email: [email protected] 📱 Telegram: @Capitalcryptorecover Contact: [email protected] 📞 Call/Text: +1 (336) 390-6684 🌐 Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 15.10.25 18:07 crypto

    Cryptocurrency's digital realm presents many opportunities, but it also conceals complex frauds. It is quite painful to lose your cryptocurrency to scam. You can feel harassed and lost as a result. If you have been the victim of a cryptocurrency scam, this guide explains what to do ASAP. Following these procedures will help you avoid further issues or get your money back. Communication with Marie ([email protected] and WhatsApp: +1 7127594675) can make all the difference.

  • 15.10.25 21:52 harristhomas7376

    "In the crypto world, this is great news I want to share. Last year, I fell victim to a scam disguised as a safe investment option. I have invested in crypto trading platforms for about 10yrs thinking I was ensuring myself a retirement income, only to find that all my assets were either frozen, I believed my assets were secure — until I discovered that my BTC funds had been frozen and withdrawals were impossible. It was a devastating moment when I realized I had been scammed, and I thought my Bitcoin was gone forever, Everything changed when a close friend recommended the Capital Crypto Recover Service. Their professionalism, expertise, and dedication enabled me to recover my lost Bitcoin funds back — more than €560.000 DEM to my BTC wallet. What once felt impossible became a reality thanks to their support. If you have lost Bitcoin through scams, hacking, failed withdrawals, or similar challenges, don’t lose hope. I strongly recommend Capital Crypto Recover Service to anyone seeking a reliable and effective solution for recovering any wallet assets. They have a proven track record of successful reputation in recovering lost password assets for their clients and can help you navigate the process of recovering your funds. Don’t let scammers get away with your hard-earned money – contact Email: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Contact: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 15.10.25 21:52 harristhomas7376

    "In the crypto world, this is great news I want to share. Last year, I fell victim to a scam disguised as a safe investment option. I have invested in crypto trading platforms for about 10yrs thinking I was ensuring myself a retirement income, only to find that all my assets were either frozen, I believed my assets were secure — until I discovered that my BTC funds had been frozen and withdrawals were impossible. It was a devastating moment when I realized I had been scammed, and I thought my Bitcoin was gone forever, Everything changed when a close friend recommended the Capital Crypto Recover Service. Their professionalism, expertise, and dedication enabled me to recover my lost Bitcoin funds back — more than €560.000 DEM to my BTC wallet. What once felt impossible became a reality thanks to their support. If you have lost Bitcoin through scams, hacking, failed withdrawals, or similar challenges, don’t lose hope. I strongly recommend Capital Crypto Recover Service to anyone seeking a reliable and effective solution for recovering any wallet assets. They have a proven track record of successful reputation in recovering lost password assets for their clients and can help you navigate the process of recovering your funds. Don’t let scammers get away with your hard-earned money – contact Email: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Contact: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 17.10.25 20:17 tyleradams

    As time passes, there are an increasing number of frauds involving Bitcoin and other cryptocurrencies. Although there are many individuals who advertise recovering money online, people should use caution in dealing, especially when money is involved. You can trust NVIDIA TECH HACKERS [[email protected]], I promise. They are the top internet recovery company, and as their names indicate, your money is reclaimed as soon as feasible. My bitcoin was successfully retrieved in large part thanks to NVIDIA TECH HACKERS. Ensure that you get top-notch service; NVIDIA TECH HACKERS provides evidence of its work; and payment is only made when the service has been completed to your satisfaction. Reach them via email: [email protected] on google mail

  • 17.10.25 20:20 lindseyvonn

    Have you gotten yourself involved in a cryptocurrency scam or any scam at all? If yes, know that you are not alone, there are a lot of people in this same situation. I'm a Health Worker and was a victim of a cryptocurrency scam that cost me a lot of money. This happened a few weeks ago, there’s only one solution which is to talk to the right people, if you don’t do this you will end up being really depressed. I was really devastated until went on LinkedIn one evening after my work hours and i saw lots of reviews popped up on my feed about [email protected], I sent an email to the team who came highly recommended - [email protected] I started seeing some hope for myself from the moment I sent them an email. The good part is they made the entire process stress free for me, i literally sat and waited for them to finish and I received what I lost in my wallet

  • 17.10.25 20:22 richardcharles

    I would recommend NVIDIA TECH HACKERS to anyone that needs this service. I decided to get into crypto investment and I ended up getting my crypto lost to an investor late last year. The guy who was supposed to be managing my account turned out to be a scammer all along. I invested 56,000 USD and at first, my reading and profit margins were looking good. I started getting worried when I couldn’t make withdrawals and realized that I’ve been scammed. I came across some of the testimonials that people said about NVIDIA TECH HACKERS and how helpful he has been in recovering their funds. I immediately contacted him in his mail at [email protected] so I can get his assistance. One week into the recovery process the funds were traced and recovered back from the scammer. I can't appreciate him enough for his professionalism.

  • 17.10.25 20:23 stevekalfman

    If you need a hacker for scam crypto recovery or mobile spy access remotely kindly reach out to [email protected] for quick response, I hired this hacker and he did a nice job. before NVIDIA TECH HACKERS, I met with different hacker's online which turns out to be scam, this NVIDIA TECH HACKERS case was different and he is the trusted hacker I can vote and refer.

  • 17.10.25 21:42 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 17.10.25 21:42 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 17.10.25 21:42 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 21.10.25 08:39 debby131

    Given how swiftly the cryptocurrency market moves, losing USDT may be a terrifying and upsetting experience. Whether you experienced a technical problem, a transaction error, or were the victim of fraud, it is important to understand the potential recovery routes. Marie can assist you in determining the specific actions you can take to attempt to regain your lost USDT when you need guidance and clarification. You can reach her via email at [email protected] and WhatsApp at +1 7127594675.

  • 21.10.25 11:45 harristhomas7376

    "In the crypto world, this is great news I want to share. Last year, I fell victim to a scam disguised as a safe investment option. I have invested in crypto trading platforms for about 10yrs thinking I was ensuring myself a retirement income, only to find that all my assets were either frozen, I believed my assets were secure — until I discovered that my BTC funds had been frozen and withdrawals were impossible. It was a devastating moment when I realized I had been scammed, and I thought my Bitcoin was gone forever, Everything changed when a close friend recommended the Capital Crypto Recover Service. Their professionalism, expertise, and dedication enabled me to recover my lost Bitcoin funds back — more than €560.000 DEM to my BTC wallet. What once felt impossible became a reality thanks to their support. If you have lost Bitcoin through scams, hacking, failed withdrawals, or similar challenges, don’t lose hope. I strongly recommend Capital Crypto Recover Service to anyone seeking a reliable and effective solution for recovering any wallet assets. They have a proven track record of successful reputation in recovering lost password assets for their clients and can help you navigate the process of recovering your funds. Don’t let scammers get away with your hard-earned money – contact Email: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Contact: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 21.10.25 11:45 harristhomas7376

    "In the crypto world, this is great news I want to share. Last year, I fell victim to a scam disguised as a safe investment option. I have invested in crypto trading platforms for about 10yrs thinking I was ensuring myself a retirement income, only to find that all my assets were either frozen, I believed my assets were secure — until I discovered that my BTC funds had been frozen and withdrawals were impossible. It was a devastating moment when I realized I had been scammed, and I thought my Bitcoin was gone forever, Everything changed when a close friend recommended the Capital Crypto Recover Service. Their professionalism, expertise, and dedication enabled me to recover my lost Bitcoin funds back — more than €560.000 DEM to my BTC wallet. What once felt impossible became a reality thanks to their support. If you have lost Bitcoin through scams, hacking, failed withdrawals, or similar challenges, don’t lose hope. I strongly recommend Capital Crypto Recover Service to anyone seeking a reliable and effective solution for recovering any wallet assets. They have a proven track record of successful reputation in recovering lost password assets for their clients and can help you navigate the process of recovering your funds. Don’t let scammers get away with your hard-earned money – contact Email: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Contact: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 22.10.25 04:48 MATT PHILLIP

    I never imagined I’d fall for a crypto romance scam but it happened. Over the course of a few months, I sent nearly $150,000 worth of Bitcoin to someone I genuinely believed I was building a future with. When they disappeared without a trace, I was left heartbroken, humiliated, and financially devastated. For a long time, I didn’t tell anyone. I felt ashamed. But eventually, while searching for answers, I came across a Reddit thread that mentioned Agent Jasmine Lopez. I reached out, not expecting much. To my surprise, she treated me with kindness, not judgment. She used advanced tools like blockchain forensics, IP tracing, and smart contract analysis and with persistence and legal support, she was able to recover nearly 85% of what I lost. I know not everyone gets that kind of outcome, but thanks to [email protected] WhatsApp at +44 736-644-5035, I’ve started to reclaim not just my assets, but my confidence and peace of mind. If you’re going through something similar, you’re not alone and there is hope.

  • 22.10.25 07:36 donnacollier

    HOW I RECOVERED MY BITCOIN FROM CRYPTO INVESTMENT SCAM HOW I RECOVERED MY BITCOIN FROM CRYPTO INVESTMENT SCAM Hello everyone l’m by name Donna collier I live in urbandale 3 weeks ago was the darkest days of my life, i invested my hard earned money the sum of $123,000 into a crypto currency platform I was introduced to by a friend I met online everything happen so fast I was promised 300% of return of investment when it was time for me to cash out my investment and profit the platform was down I was so diversitated confused and tried to end it all then I came across upswing Ai a renowned expert in crypto currency and digital assets recovery at first it seem impossible after taking up my case within the the next 48 hours they where able to track down those fraud stars and recover my money I can’t recommend them enough to any one facing likewise change I will recommend you contact upswing Ai on Contact Details: WhatsApp +,1,2,0,2,8,1,0,1,4,0,7 E m a i l @Upswing-ai.com Website https: // u psw ing-ai. com/ platform /

  • 22.10.25 11:59 elizabethrush89

    God bless Capital Crypto Recover Services for the marvelous work you did in my life, I have learned the hard way that even the most sensible investors can fall victim to scams. When my USD was stolen, for anyone who has fallen victim to one of the bitcoin binary investment scams that are currently ongoing, I felt betrayal and upset. But then I was reading a post on site when I saw a testimony of Wendy Taylor online who recommended that Capital Crypto Recovery has helped her recover scammed funds within 24 hours. after reaching out to this cyber security firm that was able to help me recover my stolen digital assets and bitcoin. I’m genuinely blown away by their amazing service and professionalism. I never imagined I’d be able to get my money back until I complained to Capital Crypto Recovery Services about my difficulties and gave all of the necessary paperwork. I was astounded that it took them 12 hours to reclaim my stolen money back. Without a doubt, my USDT assets were successfully recovered from the scam platform, Thank you so much Sir, I strongly recommend Capital Crypto Recover for any of your bitcoin recovery, digital funds recovery, hacking, and cybersecurity concerns. You reach them Call/Text Number +1 (336)390-6684 His Email: [email protected] Contact Telegram: @Capitalcryptorecover Via Contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 22.10.25 11:59 elizabethrush89

    God bless Capital Crypto Recover Services for the marvelous work you did in my life, I have learned the hard way that even the most sensible investors can fall victim to scams. When my USD was stolen, for anyone who has fallen victim to one of the bitcoin binary investment scams that are currently ongoing, I felt betrayal and upset. But then I was reading a post on site when I saw a testimony of Wendy Taylor online who recommended that Capital Crypto Recovery has helped her recover scammed funds within 24 hours. after reaching out to this cyber security firm that was able to help me recover my stolen digital assets and bitcoin. I’m genuinely blown away by their amazing service and professionalism. I never imagined I’d be able to get my money back until I complained to Capital Crypto Recovery Services about my difficulties and gave all of the necessary paperwork. I was astounded that it took them 12 hours to reclaim my stolen money back. Without a doubt, my USDT assets were successfully recovered from the scam platform, Thank you so much Sir, I strongly recommend Capital Crypto Recover for any of your bitcoin recovery, digital funds recovery, hacking, and cybersecurity concerns. You reach them Call/Text Number +1 (336)390-6684 His Email: [email protected] Contact Telegram: @Capitalcryptorecover Via Contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 22.10.25 16:31 MATT PHILLIP

    I never imagined I’d fall for a crypto romance scam but it happened. Over the course of a few months, I sent nearly $150,000 worth of Bitcoin to someone I genuinely believed I was building a future with. When they disappeared without a trace, I was left heartbroken, humiliated, and financially devastated. For a long time, I didn’t tell anyone. I felt ashamed. But eventually, while searching for answers, I came across a Reddit thread that mentioned Agent Jasmine Lopez. I reached out, not expecting much. To my surprise, she treated me with kindness, not judgment. She used advanced tools like blockchain forensics, IP tracing, and smart contract analysis and with persistence and legal support, she was able to recover nearly 85% of what I lost. I know not everyone gets that kind of outcome, but thanks to [email protected] WhatsApp at +44 736-644-5035, I’ve started to reclaim not just my assets, but my confidence and peace of mind. If you’re going through something similar, you’re not alone and there is hope.

  • 23.10.25 01:52 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 23.10.25 01:52 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 23.10.25 15:47 MATT PHILLIP

    I never imagined I’d fall for a crypto romance scam but it happened. Over the course of a few months, I sent nearly $150,000 worth of Bitcoin to someone I genuinely believed I was building a future with. When they disappeared without a trace, I was left heartbroken, humiliated, and financially devastated. For a long time, I didn’t tell anyone. I felt ashamed. But eventually, while searching for answers, I came across a Reddit thread that mentioned Agent Jasmine Lopez. I reached out, not expecting much. To my surprise, she treated me with kindness, not judgment. She used advanced tools like blockchain forensics, IP tracing, and smart contract analysis and with persistence and legal support, she was able to recover nearly 85% of what I lost. I know not everyone gets that kind of outcome, but thanks to [email protected] WhatsApp at +44 736-644-5035, I’ve started to reclaim not just my assets, but my confidence and peace of mind. If you’re going through something similar, you’re not alone and there is hope.

  • 23.10.25 21:43 patricialovick86

    How To Recover Your Bitcoin Without Falling Victim To Scams: A  Testimony Experience With Capital Crypto Recover Services, Contact Telegram: @Capitalcryptorecover Dear Everyone, I would like to take a moment to share my positive experience with Capital Crypto Recover Services. Initially, I was unsure if it would be possible to recover my stolen bitcoins. However, with their expertise and professionalism, I was able to fully recover my funds. Unfortunately, many individuals fall victim to scams in the cryptocurrency space, especially those involving fraudulent investment platforms. However, I advise caution, as not all recovery services are legitimate. I personally lost $273,000 worth of Bitcoin from my Binance account due to a deceptive platform. If you have suffered a similar loss, you may be considering crypto recovery, The Capital Crypto Recover is the most knowledgeable and effective Capital Crypto Recovery Services assisted me in recovering my stolen funds within 24 hours, after getting access to my wallet. Their service was not only prompt but also highly professional and effective, and many recovery services may not be trustworthy. Therefore, I highly recommend Capital Crypto Recover to you. i do always research and see reviews about their service, For assistance finding your misplaced cryptocurrency, get in touch with them, They do their jobs quickly and excellently, Stay safe and vigilant in the crypto world. Contact: [email protected]  You can reach them via email at [email protected] OR Call/Text Number +1 (336)390-6684 his contact website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 23.10.25 21:43 patricialovick86

    How To Recover Your Bitcoin Without Falling Victim To Scams: A  Testimony Experience With Capital Crypto Recover Services, Contact Telegram: @Capitalcryptorecover Dear Everyone, I would like to take a moment to share my positive experience with Capital Crypto Recover Services. Initially, I was unsure if it would be possible to recover my stolen bitcoins. However, with their expertise and professionalism, I was able to fully recover my funds. Unfortunately, many individuals fall victim to scams in the cryptocurrency space, especially those involving fraudulent investment platforms. However, I advise caution, as not all recovery services are legitimate. I personally lost $273,000 worth of Bitcoin from my Binance account due to a deceptive platform. If you have suffered a similar loss, you may be considering crypto recovery, The Capital Crypto Recover is the most knowledgeable and effective Capital Crypto Recovery Services assisted me in recovering my stolen funds within 24 hours, after getting access to my wallet. Their service was not only prompt but also highly professional and effective, and many recovery services may not be trustworthy. Therefore, I highly recommend Capital Crypto Recover to you. i do always research and see reviews about their service, For assistance finding your misplaced cryptocurrency, get in touch with them, They do their jobs quickly and excellently, Stay safe and vigilant in the crypto world. Contact: [email protected]  You can reach them via email at [email protected] OR Call/Text Number +1 (336)390-6684 his contact website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 24.10.25 06:08 MATT PHILLIP

    I never imagined I’d fall for a crypto romance scam but it happened. Over the course of a few months, I sent nearly $150,000 worth of Bitcoin to someone I genuinely believed I was building a future with. When they disappeared without a trace, I was left heartbroken, humiliated, and financially devastated. For a long time, I didn’t tell anyone. I felt ashamed. But eventually, while searching for answers, I came across a Reddit thread that mentioned Agent Jasmine Lopez. I reached out, not expecting much. To my surprise, she treated me with kindness, not judgment. She used advanced tools like blockchain forensics, IP tracing, and smart contract analysis and with persistence and legal support, she was able to recover nearly 85% of what I lost. I know not everyone gets that kind of outcome, but thanks to [email protected] WhatsApp at +44 736-644-5035, I’ve started to reclaim not just my assets, but my confidence and peace of mind. If you’re going through something similar, you’re not alone and there is hope.

  • 24.10.25 06:40 elizabethrush89

    God bless Capital Crypto Recover Services for the marvelous work you did in my life, I have learned the hard way that even the most sensible investors can fall victim to scams. When my USD was stolen, for anyone who has fallen victim to one of the bitcoin binary investment scams that are currently ongoing, I felt betrayal and upset. But then I was reading a post on site when I saw a testimony of Wendy Taylor online who recommended that Capital Crypto Recovery has helped her recover scammed funds within 24 hours. after reaching out to this cyber security firm that was able to help me recover my stolen digital assets and bitcoin. I’m genuinely blown away by their amazing service and professionalism. I never imagined I’d be able to get my money back until I complained to Capital Crypto Recovery Services about my difficulties and gave all of the necessary paperwork. I was astounded that it took them 12 hours to reclaim my stolen money back. Without a doubt, my USDT assets were successfully recovered from the scam platform, Thank you so much Sir, I strongly recommend Capital Crypto Recover for any of your bitcoin recovery, digital funds recovery, hacking, and cybersecurity concerns. You reach them Call/Text Number +1 (336)390-6684 His Email: [email protected] Contact Telegram: @Capitalcryptorecover Via Contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 24.10.25 06:40 elizabethrush89

    God bless Capital Crypto Recover Services for the marvelous work you did in my life, I have learned the hard way that even the most sensible investors can fall victim to scams. When my USD was stolen, for anyone who has fallen victim to one of the bitcoin binary investment scams that are currently ongoing, I felt betrayal and upset. But then I was reading a post on site when I saw a testimony of Wendy Taylor online who recommended that Capital Crypto Recovery has helped her recover scammed funds within 24 hours. after reaching out to this cyber security firm that was able to help me recover my stolen digital assets and bitcoin. I’m genuinely blown away by their amazing service and professionalism. I never imagined I’d be able to get my money back until I complained to Capital Crypto Recovery Services about my difficulties and gave all of the necessary paperwork. I was astounded that it took them 12 hours to reclaim my stolen money back. Without a doubt, my USDT assets were successfully recovered from the scam platform, Thank you so much Sir, I strongly recommend Capital Crypto Recover for any of your bitcoin recovery, digital funds recovery, hacking, and cybersecurity concerns. You reach them Call/Text Number +1 (336)390-6684 His Email: [email protected] Contact Telegram: @Capitalcryptorecover Via Contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 24.10.25 06:54 MATT PHILLIP

    I never imagined I’d fall for a crypto romance scam but it happened. Over the course of a few months, I sent nearly $150,000 worth of Bitcoin to someone I genuinely believed I was building a future with. When they disappeared without a trace, I was left heartbroken, humiliated, and financially devastated. For a long time, I didn’t tell anyone. I felt ashamed. But eventually, while searching for answers, I came across a Reddit thread that mentioned Agent Jasmine Lopez. I reached out, not expecting much. To my surprise, she treated me with kindness, not judgment. She used advanced tools like blockchain forensics, IP tracing, and smart contract analysis and with persistence and legal support, she was able to recover nearly 85% of what I lost. I know not everyone gets that kind of outcome, but thanks to [email protected] WhatsApp at +44 736-644-5035, I’ve started to reclaim not just my assets, but my confidence and peace of mind. If you’re going through something similar, you’re not alone and there is hope.

  • 24.10.25 18:18 patricialovick86

    How To Recover Your Bitcoin Without Falling Victim To Scams: A  Testimony Experience With Capital Crypto Recover Services, Contact Telegram: @Capitalcryptorecover Dear Everyone, I would like to take a moment to share my positive experience with Capital Crypto Recover Services. Initially, I was unsure if it would be possible to recover my stolen bitcoins. However, with their expertise and professionalism, I was able to fully recover my funds. Unfortunately, many individuals fall victim to scams in the cryptocurrency space, especially those involving fraudulent investment platforms. However, I advise caution, as not all recovery services are legitimate. I personally lost $273,000 worth of Bitcoin from my Binance account due to a deceptive platform. If you have suffered a similar loss, you may be considering crypto recovery, The Capital Crypto Recover is the most knowledgeable and effective Capital Crypto Recovery Services assisted me in recovering my stolen funds within 24 hours, after getting access to my wallet. Their service was not only prompt but also highly professional and effective, and many recovery services may not be trustworthy. Therefore, I highly recommend Capital Crypto Recover to you. i do always research and see reviews about their service, For assistance finding your misplaced cryptocurrency, get in touch with them, They do their jobs quickly and excellently, Stay safe and vigilant in the crypto world. Contact: [email protected]  You can reach them via email at [email protected] OR Call/Text Number +1 (336)390-6684 his contact website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 24.10.25 18:18 patricialovick86

    How To Recover Your Bitcoin Without Falling Victim To Scams: A  Testimony Experience With Capital Crypto Recover Services, Contact Telegram: @Capitalcryptorecover Dear Everyone, I would like to take a moment to share my positive experience with Capital Crypto Recover Services. Initially, I was unsure if it would be possible to recover my stolen bitcoins. However, with their expertise and professionalism, I was able to fully recover my funds. Unfortunately, many individuals fall victim to scams in the cryptocurrency space, especially those involving fraudulent investment platforms. However, I advise caution, as not all recovery services are legitimate. I personally lost $273,000 worth of Bitcoin from my Binance account due to a deceptive platform. If you have suffered a similar loss, you may be considering crypto recovery, The Capital Crypto Recover is the most knowledgeable and effective Capital Crypto Recovery Services assisted me in recovering my stolen funds within 24 hours, after getting access to my wallet. Their service was not only prompt but also highly professional and effective, and many recovery services may not be trustworthy. Therefore, I highly recommend Capital Crypto Recover to you. i do always research and see reviews about their service, For assistance finding your misplaced cryptocurrency, get in touch with them, They do their jobs quickly and excellently, Stay safe and vigilant in the crypto world. Contact: [email protected]  You can reach them via email at [email protected] OR Call/Text Number +1 (336)390-6684 his contact website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 25.10.25 00:49 tyleradams

    *HOW TO GET BACK YOUR STOLEN BITCOIN FROM SCAMMERS* ⭐️⭐️⭐️⭐️⭐️ Hello everyone, I can see a lot of things going wrong these last few days of investing online and getting scammed. I was in your shoes when I invested in a bogus binary option and was duped out of $87,000 in BTC, but thanks to the assistance of NVIDIA TECH HACKERS. They helped me get back my BTC. I didn’t trust the Hackers at first, but they were recommended to me by a friend whom I greatly respect. I received my refund in two days. I must recommend NVIDIA TECH HACKERS they are fantastic. 📧 [email protected]

  • 25.10.25 00:50 stevekalfman

    If you ever need hacking services, look no further. I found myself in a difficult situation after losing almost $510,000 USD in bitcoin. I was distraught and had no hope of survival because i lost my life savings to this scam, I had no chance of recovering my investment. Until i came across an article on google about ([email protected]). A real-life recovery expert, everything changed completely after contacting him and explaining my ordeal to him and he quickly stepped in and assisted me in recovering 95% of my lost funds. They guarantee their clients and i got the highest level of happiness their services are highly recommended. so I’m putting this here for anyone who require their services too" Email: [email protected]

  • 25.10.25 05:05 victoriabenny463

    A few months ago, I fell for what looked like a legitimate online trading platform. The website was sleek, the support team was responsive, and they even showed me fake profit charts that seemed to grow daily. I started small, and after a few test withdrawals worked, I invested more eventually depositing 2 Bitcoin in hopes of long-term returns. But one morning, when I tried to withdraw, everything changed. The platform suddenly locked my account, claiming there were additional fees to release my funds. The support chat stopped responding, and the website started giving error messages. That’s when I realized I’d been scammed. I was devastated. Two Bitcoins wasn’t pocket change, it was my savings. I filed reports online, but everyone told me it was impossible to recover crypto once it’s sent. Then, through a discussion forum, I came across Dexdert Net Recovery, a team specializing in tracing and recovering stolen digital assets. Skeptical but desperate, I reached out. Their response was immediate and professional. They asked for transaction IDs, wallet addresses, screenshots of my correspondence with the fake platform, and any proof of payment I had. Within days, their analysts traced the stolen Bitcoin through multiple wallets using blockchain forensics, They updated me step-by-step, Working with their recovery experts and blockchain partners, Dexdert Net Recovery successfully froze the funds and verified ownership of my wallet. After 2 days of persistence and verification, I finally saw my 2 Bitcoin restored back into my own wallet. I couldn’t believe it. What stood out most wasn’t just that they recovered my funds, but how transparent and supportive the Dexdert team was throughout the process. They educated me on crypto safety, how to spot fake trading sites, and how to secure my digital assets in the future. Dexdert Net Recovery truly lives up to its name. They gave me back not just my Bitcoin, but my peace of mind. Reach Out Information Below Via: Email: ([email protected]) Telegram: (https://t.me/Dexdertprorecovery) WhatsApp: (+1 (859) 609‑4156)

  • 25.10.25 10:13 wendytaylor015

    My name is Wendy Taylor, I'm from Los Angeles, i want to announce to you Viewer how Capital Crypto Recover help me to restore my Lost Bitcoin, I invested with a Crypto broker without proper research to know what I was hoarding my hard-earned money into scammers, i lost access to my crypto wallet or had your funds stolen? Don’t worry Capital Crypto Recover is here to help you recover your cryptocurrency with cutting-edge technical expertise, With years of experience in the crypto world, Capital Crypto Recover employs the best latest tools and ethical hacking techniques to help you recover lost assets, unlock hacked accounts, Whether it’s a forgotten password, Capital Crypto Recover has the expertise to help you get your crypto back. a security company service that has a 100% success rate in the recovery of crypto assets, i lost wallet and hacked accounts. I provided them the information they requested and they began their investigation. To my surprise, Capital Crypto Recover was able to trace and recover my crypto assets successfully within 24hours. Thank you for your service in helping me recover my $647,734 worth of crypto funds and I highly recommend their recovery services, they are reliable and a trusted company to any individuals looking to recover lost money. Contact email [email protected] OR Telegram @Capitalcryptorecover Call/Text Number +1 (336)390-6684 his contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 25.10.25 10:13 wendytaylor015

    My name is Wendy Taylor, I'm from Los Angeles, i want to announce to you Viewer how Capital Crypto Recover help me to restore my Lost Bitcoin, I invested with a Crypto broker without proper research to know what I was hoarding my hard-earned money into scammers, i lost access to my crypto wallet or had your funds stolen? Don’t worry Capital Crypto Recover is here to help you recover your cryptocurrency with cutting-edge technical expertise, With years of experience in the crypto world, Capital Crypto Recover employs the best latest tools and ethical hacking techniques to help you recover lost assets, unlock hacked accounts, Whether it’s a forgotten password, Capital Crypto Recover has the expertise to help you get your crypto back. a security company service that has a 100% success rate in the recovery of crypto assets, i lost wallet and hacked accounts. I provided them the information they requested and they began their investigation. To my surprise, Capital Crypto Recover was able to trace and recover my crypto assets successfully within 24hours. Thank you for your service in helping me recover my $647,734 worth of crypto funds and I highly recommend their recovery services, they are reliable and a trusted company to any individuals looking to recover lost money. Contact email [email protected] OR Telegram @Capitalcryptorecover Call/Text Number +1 (336)390-6684 his contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 26.10.25 01:03 Christopherbelle

    A terrible financial shock hit me hard. I lost $860,000 in a fake crypto scheme. Things looked good until I tried to cash out my earnings. Suddenly, my account vanished into thin air. I told the police many times, but help never showed up. Despair washed over me; I felt totally beaten. Then, I found Sylvester Bryant Intelligence. Right away, they were skilled and honest about the whole thing. They looked deep into my situation. They tracked where the stolen funds went. They fought hard for me every step of the way. To my great surprise, they got my money back. I thought that was impossible. I owe them so much for their hard work and truthfulness. Sylvester Bryant Intelligence restored my peace. If scams took your crypto, contact them now. Contact Info: Yt7cracker@gmail . com WhatsApp: ‪+1 512 577 7957. or +44 7428 662701.

  • 26.10.25 18:09 victoriabenny463

    A few months ago, I fell for what looked like a legitimate online trading platform. The website was sleek, the support team was responsive, and they even showed me fake profit charts that seemed to grow daily. I started small, and after a few test withdrawals worked, I invested more eventually depositing 2 Bitcoin in hopes of long-term returns. But one morning, when I tried to withdraw, everything changed. The platform suddenly locked my account, claiming there were additional fees to release my funds. The support chat stopped responding, and the website started giving error messages. That’s when I realized I’d been scammed. I was devastated. Two Bitcoins wasn’t pocket change, it was my savings. I filed reports online, but everyone told me it was impossible to recover crypto once it’s sent. Then, through a discussion forum, I came across Dexdert Net Recovery, a team specializing in tracing and recovering stolen digital assets. Skeptical but desperate, I reached out. Their response was immediate and professional. They asked for transaction IDs, wallet addresses, screenshots of my correspondence with the fake platform, and any proof of payment I had. Within days, their analysts traced the stolen Bitcoin through multiple wallets using blockchain forensics, They updated me step-by-step, Working with their recovery experts and blockchain partners, Dexdert Net Recovery successfully froze the funds and verified ownership of my wallet. After 2 days of persistence and verification, I finally saw my 2 Bitcoin restored back into my own wallet. I couldn’t believe it. What stood out most wasn’t just that they recovered my funds, but how transparent and supportive the Dexdert team was throughout the process. They educated me on crypto safety, how to spot fake trading sites, and how to secure my digital assets in the future. Dexdert Net Recovery truly lives up to its name. They gave me back not just my Bitcoin, but my peace of mind. Reach Out Information Below Via: Email: ([email protected]) Telegram: (https://t.me/Dexdertprorecovery) WhatsApp: (+1 (859) 609‑4156)

  • 27.10.25 11:15 harristhomas7376

    "In the crypto world, this is great news I want to share. Last year, I fell victim to a scam disguised as a safe investment option. I have invested in crypto trading platforms for about 10yrs thinking I was ensuring myself a retirement income, only to find that all my assets were either frozen, I believed my assets were secure — until I discovered that my BTC funds had been frozen and withdrawals were impossible. It was a devastating moment when I realized I had been scammed, and I thought my Bitcoin was gone forever, Everything changed when a close friend recommended the Capital Crypto Recover Service. Their professionalism, expertise, and dedication enabled me to recover my lost Bitcoin funds back — more than €560.000 DEM to my BTC wallet. What once felt impossible became a reality thanks to their support. If you have lost Bitcoin through scams, hacking, failed withdrawals, or similar challenges, don’t lose hope. I strongly recommend Capital Crypto Recover Service to anyone seeking a reliable and effective solution for recovering any wallet assets. They have a proven track record of successful reputation in recovering lost password assets for their clients and can help you navigate the process of recovering your funds. Don’t let scammers get away with your hard-earned money – contact Email: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Contact: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 27.10.25 11:15 harristhomas7376

    "In the crypto world, this is great news I want to share. Last year, I fell victim to a scam disguised as a safe investment option. I have invested in crypto trading platforms for about 10yrs thinking I was ensuring myself a retirement income, only to find that all my assets were either frozen, I believed my assets were secure — until I discovered that my BTC funds had been frozen and withdrawals were impossible. It was a devastating moment when I realized I had been scammed, and I thought my Bitcoin was gone forever, Everything changed when a close friend recommended the Capital Crypto Recover Service. Their professionalism, expertise, and dedication enabled me to recover my lost Bitcoin funds back — more than €560.000 DEM to my BTC wallet. What once felt impossible became a reality thanks to their support. If you have lost Bitcoin through scams, hacking, failed withdrawals, or similar challenges, don’t lose hope. I strongly recommend Capital Crypto Recover Service to anyone seeking a reliable and effective solution for recovering any wallet assets. They have a proven track record of successful reputation in recovering lost password assets for their clients and can help you navigate the process of recovering your funds. Don’t let scammers get away with your hard-earned money – contact Email: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Contact: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 27.10.25 17:08 raymondgonzales

    Three Cheers for Wizard Hilton Cyber Tech, Bitcoin Savior Extraordinaire In the ever-evolving world of cryptocurrency, where volatility and uncertainty reign supreme, one individual has emerged as a beacon of hope and innovation - Wizard Hilton Cyber Tech, the self-proclaimed "Bitcoin Savior Extraordinaire." This enigmatic figure, with his uncanny ability to navigate the complexities of the digital asset landscape, has captivated the attention of crypto enthusiasts and skeptics alike. Wizard Hilton Cyber Tech journey began as a humble programmer, tinkering with the underlying blockchain technology that powers Bitcoin. But it was his visionary approach and unwavering commitment to the cryptocurrency's potential that propelled him into the limelight. Through a series of strategic investments, groundbreaking algorithmic trading strategies, and a knack for anticipating market shifts, Wizard Hilton Cyber Tech has managed to consistently outperform even the savviest of Wall Street traders. Wizard Hilton Cyber Tech ability to turn even the most tumultuous of Bitcoin price swings into opportunities for substantial gains has earned him the moniker "Wizard," a testament to his unparalleled mastery of the digital currency realm. But Wizard Hilton Cyber Tech impact extends far beyond personal wealth accumulation - Wizard Hilton Cyber Tech has tirelessly advocated for the widespread adoption of Bitcoin, working tirelessly to educate the public, lobby policymakers, and collaborate with industry leaders to overcome the barriers that have long hindered the cryptocurrency's mainstream acceptance. With infectious enthusiasm and boundless energy, Wizard Hilton Cyber Tech has become a true champion of the Bitcoin cause, inspiring a new generation of crypto enthusiasts to embrace the transformative power of this revolutionary technology. As the digital currency landscape continues to evolve, Wizard Hilton Cyber Tech name will undoubtedly be etched in the annals of cryptocurrency history as a visionary, a trailblazer, and, above all, the Bitcoin Savior Extraordinaire. To get your stolen bitcoin back, reach out to Wizard Hilton Cyber Tech via: Email : wizardhiltoncybertech ( @ ) gmail (. ) com WhatsApp number  +18737715701 Good Day.

  • 27.10.25 17:20 fatimanorth

    The Federal Trade Commission said that more than $1 billion had been lost to cryptocurrency scams in 2023. Victims frequently lose everything, including hope, trust, and wealth. When your hard-earned money disappears into digital shadows, you feel trapped. Nowadays, cryptocurrency frauds are very common. You can get help from recovery specialist Marie at [email protected] and via WhatsApp at +1 7127594675.

  • 28.10.25 00:55 elizabethrush89

    God bless Capital Crypto Recover Services for the marvelous work you did in my life, I have learned the hard way that even the most sensible investors can fall victim to scams. When my USD was stolen, for anyone who has fallen victim to one of the bitcoin binary investment scams that are currently ongoing, I felt betrayal and upset. But then I was reading a post on site when I saw a testimony of Wendy Taylor online who recommended that Capital Crypto Recovery has helped her recover scammed funds within 24 hours. after reaching out to this cyber security firm that was able to help me recover my stolen digital assets and bitcoin. I’m genuinely blown away by their amazing service and professionalism. I never imagined I’d be able to get my money back until I complained to Capital Crypto Recovery Services about my difficulties and gave all of the necessary paperwork. I was astounded that it took them 12 hours to reclaim my stolen money back. Without a doubt, my USDT assets were successfully recovered from the scam platform, Thank you so much Sir, I strongly recommend Capital Crypto Recover for any of your bitcoin recovery, digital funds recovery, hacking, and cybersecurity concerns. You reach them Call/Text Number +1 (336)390-6684 His Email: [email protected] Contact Telegram: @Capitalcryptorecover Via Contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 28.10.25 00:55 elizabethrush89

    God bless Capital Crypto Recover Services for the marvelous work you did in my life, I have learned the hard way that even the most sensible investors can fall victim to scams. When my USD was stolen, for anyone who has fallen victim to one of the bitcoin binary investment scams that are currently ongoing, I felt betrayal and upset. But then I was reading a post on site when I saw a testimony of Wendy Taylor online who recommended that Capital Crypto Recovery has helped her recover scammed funds within 24 hours. after reaching out to this cyber security firm that was able to help me recover my stolen digital assets and bitcoin. I’m genuinely blown away by their amazing service and professionalism. I never imagined I’d be able to get my money back until I complained to Capital Crypto Recovery Services about my difficulties and gave all of the necessary paperwork. I was astounded that it took them 12 hours to reclaim my stolen money back. Without a doubt, my USDT assets were successfully recovered from the scam platform, Thank you so much Sir, I strongly recommend Capital Crypto Recover for any of your bitcoin recovery, digital funds recovery, hacking, and cybersecurity concerns. You reach them Call/Text Number +1 (336)390-6684 His Email: [email protected] Contact Telegram: @Capitalcryptorecover Via Contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 29.10.25 03:43 Christopherbelle

    A sudden money crisis struck me. I dropped $82,000 to a phony crypto scam. All seemed fine until I went to pull out my gains. Then, i was unable to get back my hard earned money. I reported it to the police several times. No aid came my way. Deep sadness hit me; I felt crushed. That's when I learned about Sylvester Bryant Intelligence. They acted quick and fair from the start. They checked my case closely. They followed the path of my lost cash. They pushed strong for me at each turn. In shock, they brought my funds back. I had figured it could not happen. I thank them for their effort and honesty. Sylvester Bryant Intelligence gave me calm again. If a scam stole your crypto, reach out to them today. Contact Info: Yt7cracker@gmail . com WhatsApp: +1 512 577 7957 or +44 7428 662701.

  • 29.10.25 10:56 wendytaylor015

    My name is Wendy Taylor, I'm from Los Angeles, i want to announce to you Viewer how Capital Crypto Recover help me to restore my Lost Bitcoin, I invested with a Crypto broker without proper research to know what I was hoarding my hard-earned money into scammers, i lost access to my crypto wallet or had your funds stolen? Don’t worry Capital Crypto Recover is here to help you recover your cryptocurrency with cutting-edge technical expertise, With years of experience in the crypto world, Capital Crypto Recover employs the best latest tools and ethical hacking techniques to help you recover lost assets, unlock hacked accounts, Whether it’s a forgotten password, Capital Crypto Recover has the expertise to help you get your crypto back. a security company service that has a 100% success rate in the recovery of crypto assets, i lost wallet and hacked accounts. I provided them the information they requested and they began their investigation. To my surprise, Capital Crypto Recover was able to trace and recover my crypto assets successfully within 24hours. Thank you for your service in helping me recover my $647,734 worth of crypto funds and I highly recommend their recovery services, they are reliable and a trusted company to any individuals looking to recover lost money. Contact email [email protected] OR Telegram @Capitalcryptorecover Call/Text Number +1 (336)390-6684 his contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 29.10.25 10:56 wendytaylor015

    My name is Wendy Taylor, I'm from Los Angeles, i want to announce to you Viewer how Capital Crypto Recover help me to restore my Lost Bitcoin, I invested with a Crypto broker without proper research to know what I was hoarding my hard-earned money into scammers, i lost access to my crypto wallet or had your funds stolen? Don’t worry Capital Crypto Recover is here to help you recover your cryptocurrency with cutting-edge technical expertise, With years of experience in the crypto world, Capital Crypto Recover employs the best latest tools and ethical hacking techniques to help you recover lost assets, unlock hacked accounts, Whether it’s a forgotten password, Capital Crypto Recover has the expertise to help you get your crypto back. a security company service that has a 100% success rate in the recovery of crypto assets, i lost wallet and hacked accounts. I provided them the information they requested and they began their investigation. To my surprise, Capital Crypto Recover was able to trace and recover my crypto assets successfully within 24hours. Thank you for your service in helping me recover my $647,734 worth of crypto funds and I highly recommend their recovery services, they are reliable and a trusted company to any individuals looking to recover lost money. Contact email [email protected] OR Telegram @Capitalcryptorecover Call/Text Number +1 (336)390-6684 his contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 30.10.25 09:49 Christopherbelle

    I suffered a huge money blow when $80,000 slipped away in a bogus crypto plot. It all looked great at first. Then I went to pull out my gains, and poof—my account was gone. I kept telling the cops about it, but they did zip. I felt shattered and lost. That's when I stumbled on Sylvester Bryant Intelligence. Things turned around fast. Right away, they showed clear steps, sharp know-how, and real drive to fix it. They tracked my missing cash step by step and pushed hard till they got it back. I swear, I figured it was a lost cause. Their straight-up work and trust brought back my calm. If a scam stole your crypto, reach out to them now. yt7cracker@gmail . com | WhatsApp: +1 512 577 7957 or +44 7428 662701

  • 30.10.25 12:03 elizabethrush89

    God bless Capital Crypto Recover Services for the marvelous work you did in my life, I have learned the hard way that even the most sensible investors can fall victim to scams. When my USD was stolen, for anyone who has fallen victim to one of the bitcoin binary investment scams that are currently ongoing, I felt betrayal and upset. But then I was reading a post on site when I saw a testimony of Wendy Taylor online who recommended that Capital Crypto Recovery has helped her recover scammed funds within 24 hours. after reaching out to this cyber security firm that was able to help me recover my stolen digital assets and bitcoin. I’m genuinely blown away by their amazing service and professionalism. I never imagined I’d be able to get my money back until I complained to Capital Crypto Recovery Services about my difficulties and gave all of the necessary paperwork. I was astounded that it took them 12 hours to reclaim my stolen money back. Without a doubt, my USDT assets were successfully recovered from the scam platform, Thank you so much Sir, I strongly recommend Capital Crypto Recover for any of your bitcoin recovery, digital funds recovery, hacking, and cybersecurity concerns. You reach them Call/Text Number +1 (336)390-6684 His Email: [email protected] Contact Telegram: @Capitalcryptorecover Via Contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

Для участия в Чате вам необходим бесплатный аккаунт pro-blockchain.com Войти Регистрация
Есть вопросы?
С вами на связи 24/7
Help Icon